GARCH Processes with Non-parametric Innovations for Market Risk Estimation

  • José Miguel Hernández-Lobato
  • Daniel Hernández-Lobato
  • Alberto Suárez
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4669)


A procedure to estimate the parameters of GARCH processes with non-parametric innovations is proposed. We also design an improved technique to estimate the density of heavy-tailed distributions with real support from empirical data. The performance of GARCH processes with non-parametric innovations is evaluated in a series of experiments on the daily log-returns of IBM stocks. These experiments demonstrate the capacity of the improved estimator to yield a precise quantification of market risk.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Dowd, K.: Measuring Market Risk. John Wiley & Sons, Chichester (2005)Google Scholar
  2. 2.
    Campbell, J.Y., Lo, A.W., MacKinlay, A.C.: The Econometrics of Financial Markets. Princeton University Press, Princeton (1997)MATHGoogle Scholar
  3. 3.
    Bollerslev, T.: Generalized autoregressive conditional heteroskedasticity. Journal of Econometrics 31(3), 307–327 (1986)MATHCrossRefGoogle Scholar
  4. 4.
    Hamilton, J.D.: Time Series Analysis. Princeton University Press, Princeton (1994)MATHGoogle Scholar
  5. 5.
    Cont, R.: Empirical properties of asset returns: stylized facts and statistical issues. Journal of Quantitative Finance 1, 223–236 (2001)Google Scholar
  6. 6.
    Ding, Z., C.W.J.G., Engle, R.F.: A long memory property of stock market returns and a new model. Journal of Empirical Finance 1(1), 83–106 (1993)CrossRefGoogle Scholar
  7. 7.
    Nolan, J.P: Stable Distributions. Birkhäuser, Basel (2002)Google Scholar
  8. 8.
    Devroye, L., Gyrfi, L., Lugosi, G.: A Probabilistic Theory of Pattern Recognition (Stochastic Modelling and Applied Probability). Springer, Heidelberg (1997)Google Scholar
  9. 9.
    Silverman, B.W.: Density Estimation for Statistics and Data Analysis. Chapman & Hall/CRC (1986)Google Scholar
  10. 10.
    Bishop, C.M.: Neural Networks for Pattern Recognition. Oxford University Press, Oxford, UK (1995)Google Scholar
  11. 11.
    Wand, M.P., Marron, J.S., Ruppert, D.: Transformations in density estimation. with discussion and a rejoinder by the authors. Journal of the American Statistical Association 86(414), 343–361 (1991)MATHCrossRefGoogle Scholar
  12. 12.
    Barndorff-Nielsen, O.E.: Normal inverse gaussian distributions and stochastic volatility modelling. Scandinavian Journal of Statistics 24(1), 1–13 (1997)MATHCrossRefGoogle Scholar
  13. 13.
    Eberlein, E., Keller, U.: Hyperbolic distributions in finance. Bernoulli 1(3), 281–299 (1995)MATHCrossRefGoogle Scholar
  14. 14.
    Prause, K.: The generalized hyperbolic model: Estimation, financial derivatives and risk measures. PhD Dissertation, University of Freiburg (1999)Google Scholar
  15. 15.
    Kerkhof, J., Melenberg, B.: Backtesting for risk-based regulatory capital. Journal of Banking & Finance 28(8), 1845–1865 (2004)CrossRefGoogle Scholar
  16. 16.
    R Development Core Team: R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria ISBN 3-900051-07-0 (2005)Google Scholar
  17. 17.
    Mittnik, S., D.T., D., C.: Computing the probability density function of the stable paretian distribution. Mathematical and Computer Modelling 29(10), 235–240 (1997)CrossRefGoogle Scholar
  18. 18.
    Wuertz, D., Others, M.: fBasics: Financial Software Collection - fBasics (2004)Google Scholar
  19. 19.
    Longin, F.M.: The asymptotic distribution of extreme stock market returns. The Journal of Business 69(3), 383–408 (1996)CrossRefGoogle Scholar
  20. 20.
    Dennis, W., Jansen, C.G.d.v.: On the frequency of large stock returns: Putting booms and busts into perspective. The Review of Economics and Statistics 73(1), 18–24 (1991)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • José Miguel Hernández-Lobato
    • 1
  • Daniel Hernández-Lobato
    • 1
  • Alberto Suárez
    • 1
  1. 1.Escuela Politécnica Superior, Universidad Autónoma de Madrid, C/ Francisco Tomás y Valiente, 11, Madrid 28049Spain

Personalised recommendations