Skip to main content

An Application of Recurrent Neural Networks to Discriminative Keyword Spotting

  • Conference paper
Artificial Neural Networks – ICANN 2007 (ICANN 2007)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4669))

Included in the following conference series:

Abstract

The goal of keyword spotting is to detect the presence of specific spoken words in unconstrained speech. The majority of keyword spotting systems are based on generative hidden Markov models and lack discriminative capabilities. However, discriminative keyword spotting systems are currently based on frame-level posterior probabilities of sub-word units. This paper presents a discriminative keyword spotting system based on recurrent neural networks only, that uses information from long time spans to estimate word-level posterior probabilities. In a keyword spotting task on a large database of unconstrained speech the system achieved a keyword spotting accuracy of 84.5%.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Wilpon, J.G., Rabiner, L.R., Lee, C., Goldman, E.R.: Automatic recognition of keywords in unconstrained speech using hidden Markov models. IEEE Transactions on Acoustics, Speech and Audio Processing 38(11), 1870–1878 (1990)

    Article  Google Scholar 

  2. Benítez, M.C., Rubio, A., García, P., de la Torre, A.: Different confidence measures for word verification in speech recognition. Speech Communication 32, 79–94 (2000)

    Article  Google Scholar 

  3. Silaghi, M.C., Bourlard, H.: Iterative posterior-based keyword spotting without filler models. In: Proceedings of IEEE Automatic Speech Recognition and Understanding Workshop, Keystone - Colorado (U.S.A.) (1999)

    Google Scholar 

  4. Silaghi, M.: Spotting subsequences matching an HMM using the average observation probability criteria with application to keyword spotting. In: Proceedings of the 20th National Conference on Artificial Intelligence and the 17th Conference on Innovative Applications of Artificial Intelligence, pp. 1118–1123. Pittsburgh - Pennsylvania (U.S.A.) (2005)

    Google Scholar 

  5. Ketabdar, H., Vepa, J., Bengio, S., Bourlard, H.: Posterior based keyword spotting with a priori thresholds. In: Proceedings of the 9th International Conference on Spoken Language Processing, Pittsburgh - Pennsylvania (U.S.A.) (2006)

    Google Scholar 

  6. Robinson, A.J.: An application of recurrent nets to phone probability estimation. IEEE Transactions on Neural Networks 5(2), 298–305 (1994)

    Article  Google Scholar 

  7. Bourlard, H.A., Morgan, N.: Connectionist speech recognition: a hybrid approach. Kluwer Academic Publishers, Dordrecht (1994)

    Google Scholar 

  8. Keshet, J., Grangier, D., Bengio, S.: Discriminative keyword spotting. In: Workshop on Non-Linear Speech Processing NOLISP, Paris (France) (2007)

    Google Scholar 

  9. Graves, A., Fernández, S., Gomez, F., Schmidhuber, J.: Connectionist temporal classification: labelling unsegmented sequence data with recurrent neural nets. In: Proceedings of the 23rd International Conference on Machine Learning, Pittsburgh - Pennsylvania (U.S.A.) (2006)

    Google Scholar 

  10. Fernández, S., Graves, A., Schmidhuber, J.: Sequence labelling in structured domains with hierarchical recurrent neural networks. In: Proceedings of the 20th International Joint Conference on Artificial Intelligence, Hyderabad (India) (2007)

    Google Scholar 

  11. Silaghi, M.C., Vargiya, R.: A new evaluation criteria for keyword spotting techniques and a new algorithm. In: Proceedings of InterSpeech (2005)

    Google Scholar 

  12. Graves, A., Schmidhuber, J.: Framewise phoneme classification with bidirectional LSTM and other neural network architectures. Neural Networks 18(5–6), 602–610 (2005)

    Article  Google Scholar 

  13. Graves, A., Fernández, S., Schmidhuber, J.: Bidirectional LSTM networks for improved phoneme classification and recognition. In: Duch, W., Kacprzyk, J., Oja, E., Zadrożny, S. (eds.) ICANN 2005. LNCS, vol. 3697, pp. 799–804. Springer, Heidelberg (2005)

    Google Scholar 

  14. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Computation 9(8), 1735–1780 (1997)

    Article  Google Scholar 

  15. Gers, F., Schraudolph, N., Schmidhuber, J.: Learning precise timing with LSTM recurrent networks. Journal of Machine Learning Research 3, 115–143 (2002)

    Article  Google Scholar 

  16. Schuster, M., Paliwal, K.K.: Bidirectional recurrent neural networks. IEEE Transactions on Signal Processing 45, 2673–2681 (1997)

    Article  Google Scholar 

  17. Verbmobil: Database version 2.3 (2004), http://www.phonetik.uni-muenchen.de/Forschung/Verbmobil/Verbmobil.html

Download references

Author information

Authors and Affiliations

Authors

Editor information

Joaquim Marques de Sá Luís A. Alexandre Włodzisław Duch Danilo Mandic

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Fernández, S., Graves, A., Schmidhuber, J. (2007). An Application of Recurrent Neural Networks to Discriminative Keyword Spotting. In: de Sá, J.M., Alexandre, L.A., Duch, W., Mandic, D. (eds) Artificial Neural Networks – ICANN 2007. ICANN 2007. Lecture Notes in Computer Science, vol 4669. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-74695-9_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-74695-9_23

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-74693-5

  • Online ISBN: 978-3-540-74695-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics