Skip to main content

A Distributed Message Passing Algorithm for Sensor Localization

  • Conference paper

Part of the Lecture Notes in Computer Science book series (LNTCS,volume 4668)

Abstract

We propose a fully distributed message passing algorithm based on expectation propagation for the purpose of sensor localization. Sensors perform noisy measurements of their mutual distances and their relative angles. These measurements form the basis for an iterative, local (i.e. distributed) algorithm to compute the sensor’s locations including uncertainties for these estimates. This approach offers a distributed, computationally efficient and flexible framework for information fusion in sensor networks.

Keywords

  • Root Mean Square Error
  • Sensor Network
  • Communication Range
  • Sensor Localization
  • Node Potential

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-540-74690-4_78
  • Chapter length: 9 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   139.00
Price excludes VAT (USA)
  • ISBN: 978-3-540-74690-4
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   179.99
Price excludes VAT (USA)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ihler, A.T., Fisher III, J.W., Moses, R.L., Willsky, A.S.: Nonparametric belief propagation for self-calibration in sensor networks. In: Information Processing in Sensor Networks (2004)

    Google Scholar 

  2. Minka, T.: Expectation propagation for approximate Bayesian inference. In: UAI, pp. 362–369 (2001)

    Google Scholar 

  3. Moses, R.L., Krishnamurthy, D., Patterson, R.: A self-localization method for wireless sensor networks. EURASIP Journal on Applied Signal Processing 4, 348–358 (2003)

    CrossRef  Google Scholar 

  4. Peng, R., Sichitiu, M.L.: Robust, probabilistic, constraint-based localization for wireless sensor networks, pp. 541–550 (2005)

    Google Scholar 

  5. Priyantha, N.B., Balakrishnan, H., Demaine, E., Teller, S.: Anchor-free distributed localization in sensor networks.Technical Report TR-892, MIT LCS (April 2003)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Welling, M., Lim, J.J. (2007). A Distributed Message Passing Algorithm for Sensor Localization. In: de Sá, J.M., Alexandre, L.A., Duch, W., Mandic, D. (eds) Artificial Neural Networks – ICANN 2007. ICANN 2007. Lecture Notes in Computer Science, vol 4668. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-74690-4_78

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-74690-4_78

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-74689-8

  • Online ISBN: 978-3-540-74690-4

  • eBook Packages: Computer ScienceComputer Science (R0)