Skip to main content

Direct Current Resistivity Methods

  • Chapter
Environmental Geology

Abstract

Direct current (dc) resistivity methods use artificial sources of current to produce an electrical potential field in the ground. In almost all resistivity methods, a current is introduced into the ground through point electrodes (C1, C2) and the potential field is measured using two other electrodes (the potential electrodes P1 and P2), as shown in Fig. 4.3-1. The source current can be direct current or low-frequency (0.1 – 30 Hz) alternating current. The aim of generating and measuring the electrical potential field is to determine the spatial resistivity distribution (or its reciprocal - conductivity) in the ground. As the potential between P1 and P2, the current introduced through C1 and C2, and the electrode configuration are known, the resistivity of the ground can be determined; this is referred to as the “apparent resistivity”.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 349.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 449.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References and further readings

  • Barker, R. D. (1981): The offset system of electrical resistivity sounding and its use with a multicore cable. Geophys. Prosp., 29, 128–143.

    Article  Google Scholar 

  • Barker, R. D. (1989): Depth of investigation of collinear symmetrical four-electrode arrays. Geophysics, 54, 1031–1037.

    Article  Google Scholar 

  • Barker, R. D. (1992): A simple algorithm for electrical imaging of the subsurface. First Break, 10,2, 52–62.

    Google Scholar 

  • Beard, L.P. & Morgan, F.D. (1991): Assessment of 2D-resistivity structures using IDinversion. Geophysics, 56, 874–883.

    Article  Google Scholar 

  • Dahlin, T. (1996): 2D-resistivity surveying for environmental and engineering applications. First Break, 14, 275–283.

    Google Scholar 

  • Dahlin, T., Bernitone, C. & Loke, M. H. (2002): A 3-D resistivity investigation of a contaminated site at Lernacken, Sweden. Geophysicis, 67, 1692–1700.

    Google Scholar 

  • Dey, A. & Morrison, H. F. (1979a): Resistivity modelling for arbitrarily shaped twodimensional structures. Geophys. Prosp., 27, 106–136.

    Article  Google Scholar 

  • Dey, A. & Morrison, H. F. (1979b): Resistivity modelling for arbitrarily shaped threedimensional structures. Geophysics, 44, 753–780.

    Article  Google Scholar 

  • Edwards, L. S. (1977): A modified pseudosection for resistivity and induced polarisation. Geophysics, 42, 1020–1036.

    Article  Google Scholar 

  • Fox, R. C., Hohmann, G. W., Killpack, T. J. & Rijo, L. (1980): Topographic effects in resistivity and induced-polarization surveys. Geophysics, 45, 75–93.

    Article  Google Scholar 

  • Friedel, S. (2000): Über die Abbildungseigenschaften der geoelektrischen Impedanztomographie unter Berücksichtigung von endlicher Anzahl und endlicher Genauigkeit der Meßdaten. Dissertation, Universität Leipzig. Berichte aus der Wissenschaft. Shaker, Aachen.

    Google Scholar 

  • Habberjam, G. M. (1979): Apparent resistivity observations and the use of square array techniques. Geoexploration Monographs, Series 1, 9. Bornträger, Berlin.

    Google Scholar 

  • Hoogervorst, G. H. T. C. (1975): Fundamental noise affecting signal-to-noise ratio of resistivity surveys. Geophys. Prosp., 23, 380–390.

    Article  Google Scholar 

  • INTERPEX Ltd. (1993): RESIX-IP user’s manual. Golden Colorado.

    Google Scholar 

  • Karous, M. & Pernu, T. K. (1985): Combined sounding-profiling resistivity measurements with three-electrode arrays. Geophys. Prosp., 33, 447–459.

    Article  Google Scholar 

  • Koefoed, O. (1979): Geosounding principles 1: resistivity sounding measurements. Elsevier, Amsterdam.

    Google Scholar 

  • Lile, O. B., Backe, K. R., Elvebakk, H. & Buan, J. E. (1994): Resistivity measurements on the sea bottom to map fracture zones in the bedrock underneath sediments. Geophys. Prosp., 42, 813–824.

    Article  Google Scholar 

  • Loke, M. H. & Barker, R. D. (1995): Least-squares deconvolution of apparent resistivity pseudosections. Geophysics, 60, 1682–1690.

    Article  Google Scholar 

  • Loke, M. H. & Barker, R. D. ( 1996): Rapid least-squares inversion of apparent resistivity pseudosections using a quasi-Newton method. Geophys. Prosp., 44, 131–152.

    Article  Google Scholar 

  • Marin, L. E., Steinich, B., Jaglowski, D. & Barcelona, M. J. (1998): Hydrogeologic site characterization using azimuthal resistivity surveys. JEEG, 3, 179–184.

    Google Scholar 

  • Milsom, J. (1996): Field Geophysics. Geological Society of London handbook. Open University Press and Halsted Press. Wiley and Sons, Chichester.

    Google Scholar 

  • Morris, M., Ronning, J. S. & Lile, O. B. (1997): Detecting lateral resistivity inhomogeneities with the Schlumberger array. Geophys. Prosp., 45, 435–448.

    Article  Google Scholar 

  • Nowroozi, A. A., Horrocks, S. B. & Henderson, P. (1999): Saltwater intrusion into the freshwater aquifer in the eastern shore of Virginia: a reconnaissance electrical resistivity survey. Journal of Applied Geophysics, 42, 1–22.

    Article  Google Scholar 

  • Ogilvy, R., Meldrum, P., Chambers, J. & Williams, G. (2002): The Use of 3D Electrical Resistivity Tomography to characterise Waste Leachate Distribution within a closed Landfill, Thriplow, UK. Journal of Environmental and Engineering Geophysics, 7, 11–18

    Article  Google Scholar 

  • Olayinka, A. I. & Yaramanci, U. (2000): Assessment of the reliability of 2D-inversion of apparent resistivity data. Geophys. Prosp., 48, 293–316.

    Article  Google Scholar 

  • Olayinka, A. I. & Yaramanci, U. (2002): Smooth and sharp-boundary inversion of twodimensional pseudosection data in presence of a decrease in resistivity with depth. Europ. J. Environm. Engin. Geophys., 7, 139–165.

    Google Scholar 

  • Oldenburg, D. W. & Li, J. (1999): Estimating depth of investigation in dc resistivity and IP surveys. Geophysics, 64, 403–416.

    Article  Google Scholar 

  • Ramirez, A., Daily, W., Binley, A., Labrecque, D. & Roelant, D. (1996): Detection of leaks in underground storage tanks using electrical resistance methods. JEEG, 1, 189–203.

    Google Scholar 

  • Roy, A. & Apparao, A. (1971): Depth of investigation in direct current methods. Geophysics, 36, 943–959.

    Article  Google Scholar 

  • Sandberg, S. K. (1993): Examples of resolution improvement in geoelectrical soundings applied to groundwater investigations. Geophys. Prosp., 41, 207–227.

    Article  Google Scholar 

  • Schulz, R. & Tezkan, B. (1988): Interpretation of resistivity measurements over 2D-structures. Geophys. Prosp., 36, 962–975.

    Article  Google Scholar 

  • Sharma, S. P. & Kaikkonen, P. (1999): Appraisal of equivalence and suppression problems in ID EM and DC measurements using global optimization and joint inversion. Geophys. Prosp., 47, 219–249.

    Article  Google Scholar 

  • Sheriff, R.E. (1991): Encyclopedic Dictionary of Exploration Geophysics, 3rd edn. SEG, Tulsa, OK.

    Google Scholar 

  • Shima, H. (1990): Two-dimensional automatic resistivity inversion technique using alpha-centers. Geophysics, 55, 682–694.

    Article  Google Scholar 

  • Spitzer, K. (1995): A 3D-finite difference algorithm for DC resistivity modelling using conjugate gradient methods. Geophys. J. Int., 123, 903–914.

    Article  Google Scholar 

  • Spitzer, K. & Kümpel, H.-J. (1997): 3D FD resistivity modeling and sensitivity analyses applied to a highly resistive phonolitic body. Geophysical Prospecting, 45, 963–982.

    Article  Google Scholar 

  • Spitzer, K. (1998): The three-dimensional DC sensitivity for surface and subsurface sources. Geophys. J. Int., 134, 736–746

    Article  Google Scholar 

  • Sumner, J.S. (1976): Principles of Induced Polarization for Geophysical Exploration. Elsevier, Amsterdam.

    Google Scholar 

  • Telford, W. M., Geldart, L. P. & Sheriff, R. E. (1990): Applied geophysics, 2nd edn., Cambridge University Press, Cambridge.

    Google Scholar 

  • Vanhala, H., Soininen, H., Kukkonen, I. (1992): Detecting organic chemical contaminants by spectral-induced polarization method in glacial till environment. Geophysics, 57, 1014–1017.

    Article  Google Scholar 

  • Vickery, A. C. & Hobbs, B. A. (2002): The effect of subsurface pipes on apparentresistivity measurements. Geophys. Prosp., 50, 1–13.

    Article  Google Scholar 

  • Ward, S. H. (1990): Resistivity and induced polarization methods. In: Ward, S. H. (Ed.): Geotechnical and environmental geophysics, I: Review and Tutorial. Society of Exploration Geophysicists, Tulsa, Oklahoma, 147–189.

    Google Scholar 

  • Watson, K. A. & Barker, R. D. (1999): Differentiating anisotropy and lateral effects using azimuthal resistivity offset Wenner soundings. Geophysics, 64, 739–745.

    Article  Google Scholar 

  • Weller, A. & Bärner, F.D. (1996): Measurements of spectral induced polarization for environmental purposes. Environmental Geology, 27, 329–334.

    Article  Google Scholar 

  • Weller, A., Frangos, W., Seichter, M. (1999): Three-dimensional inversion of induced polarization data from simulated waste. Journal of Applied Geophysics, 41, 31–47.

    Article  Google Scholar 

  • Zohdy, A. A. R. (1989): A new method for the automatic interpretation of Schlumberger and Wenner sounding curves. Geophysics, 54, 245–253.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Seidel, K., Lange, G. (2007). Direct Current Resistivity Methods. In: Environmental Geology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-74671-3_8

Download citation

Publish with us

Policies and ethics