Veterinary Antibiotics in Dust: Sources, Environmental Concentrations, and Possible Health Hazards

  • G. Hamscher
  • J. Hartung


Allergic Contact Dermatitis Dust Exposure Liquid Manure Electrospray Ionization Tandem Mass Spectrometry Veterinary Antibiotic 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Anonymous (2001) [in German] Deut Tierärztebl 8:841Google Scholar
  2. Barbera E, de la Cuadra J (1989) Occupational airborne allergic contact dermatitis from tylosin. Contact Dermatitis 20:308–309CrossRefGoogle Scholar
  3. Berger K, Petersen B, Büning-Pfaue H (1986) Persistenz von Gülle-Arzneistoffen in der Nahrungskette. Archiv für Lebensmittelhygiene 37:99–102Google Scholar
  4. Boxall ABA, Fogg LA, Kay P, Blackwell PA, Pemberton EJ, Croxford A (2003) Prioritisation of veterinary medicines in the UK environment. Toxicol Lett 142:207–218CrossRefGoogle Scholar
  5. Boxall ABA, Fogg LA, Blackwell PA, Kay P, Pemberton EJ, Croxford A (2004) Veterinary medicines in the environment. Rev Environ Contam Toxicol. 180:1–91CrossRefGoogle Scholar
  6. Caraffini S, Assalve D, Stingeni L, Lisi P (1994) Tylosin, an airborne contact allergen in veterinarians. Contact Dermatitis 5:327–328CrossRefGoogle Scholar
  7. Chapin A, Rule A, Gibson K, Buckley T, Schwab K (2005) Airborne multidrug-resistant bacteria isolated from a concentrated swine feeding operation. Environ Health Persp 113:137–142Google Scholar
  8. Choquet-Kastylevsky G, Vial T, Descotes J (2002) Allergic adverse reactions to sulfonamides. Curr Allergy Asthma Rep 2:16–25CrossRefGoogle Scholar
  9. Danese P, Zanca A, Bertazzoni MG (1994) Occupational contact dermatitis from tylosin. Contact Dermatitis 30:122–123CrossRefGoogle Scholar
  10. Daughton CG, Ternes TA (1999) Pharmaceuticals and personal care products in the environment: agents of subtle change? Environ Health Persp 107:907–938CrossRefGoogle Scholar
  11. De Liguoro M, Cibin V, Capolongo F, Halling-Sørensen B, Montesissa C (2003) Use of oxytetracycline and tylosin in intensive calf farming: evaluation of transfer to manure and soil. Chemosphere 52:203–212CrossRefGoogle Scholar
  12. Derksen JG, Rijs GB, Jongbloed RH (2004) Diffuse pollution of surface water by pharmaceutical products. Water Sci Technol 49:213–221Google Scholar
  13. Diaz-Cruz MS, de Alda MJL, Barcelo D (2003) Environmental behaviour and analysis of veterinary and human drugs in soils, sediments and sludge. TRAC – Trend Anal Chem 22:340–351CrossRefGoogle Scholar
  14. Donham KJ (1993) Respiratory disease hazards to workers in livestock and poultry confinement structures. Semin Respir Med 14:49–59Google Scholar
  15. Gavalchin J, Katz SE (1994) The persistence of faecal-borne antibiotics in soil. J AOAC Intern 77:481–485Google Scholar
  16. Gilchrist MJ, Greko C, Wallinga DB, Beran GW, Riley DG, Thorne PS (2007) The potential role of concentrated animal feeding operations in infectious disease epidemics and antibiotic resistance. Environ Health Persp 115:313–316CrossRefGoogle Scholar
  17. Halling-Sørensen B, Nors Nielsen S, Lanzky PF, Ingerslev F, Holten-Lützhøft HC, Jørgensen SE (1998) Occurrence, fate and effects of pharmaceutical substances in the environment – a review. Chemosphere 36:357–393CrossRefGoogle Scholar
  18. Hamscher G, Sczesny S, Abu-Qare A, Höper H, Nau H (2000) Substances with pharmacological effects including hormonally active substances in the environment: identification of tetracyclines in soil fertilized with animal slurry [in German]. Deut Tierarztl Woch 107:332–334Google Scholar
  19. Hamscher G, Sczesny S, Höper H, Nau H (2002) Determination of persistent tetracycline residues in soil fertilized with animal slurry by high-performance liquid chromatography with electrospray ionization tandem mass spectrometry. Anal Chem 74:1509–1518CrossRefGoogle Scholar
  20. Hamscher G, Pawelzick HT, Sczesny S, Nau H, Hartung J (2003) Antibiotics in dust originating from a pig fattening farm: a new source of health hazard for farmers? Environ Health Persp 111:1590–1594Google Scholar
  21. Hamscher G, Pawelzick HT, Höper H, Nau H (2005) Different behaviour of tetracyclines and sulfonamides in sandy soils fertilized with animal slurry. Environ Toxicol Chem 24:861–868CrossRefGoogle Scholar
  22. Hao C, Clement R, Yang P (2007) Liquid Chromatography-tandem mass spectrometry of bioactive pharmaceutical compounds in the aquatic environment – a decade’s activities. Anal Bioanal Chem 387:1247–1257CrossRefGoogle Scholar
  23. Hartung J (1995) Gas and particle emissions from housing in animal production [in German]. Deut Tierarztl Woch 102:283–288Google Scholar
  24. Hartung J (1997) Dust exposure of livestock [in German]. Zbl Arbeitsmed 47:65–72Google Scholar
  25. Hartung J (1998) Nature and amount of aerial pollutants from livestock buildings [in German]. Deut Tierarztl Woch 105:213–216Google Scholar
  26. Heberer T (2002) Occurrence, fate, and removal of pharmaceutical residues in the aquatic environment: a review of recent research papers. Toxicol Lett 131:5–17CrossRefGoogle Scholar
  27. Hjorth N, Roed-Petersen J (1980) Allergic contact dermatitis in veterinary surgeons. Contact Dermatitis 6:27–29CrossRefGoogle Scholar
  28. Holt D, Harvey D, Hurley R (1993) Chloramphenicol toxicity. Adverse Drug React Toxicol Rev 12:83–95Google Scholar
  29. Höper H, Kues J, Nau H, Hamscher G (2002) Eintrag und Verbleib von Tierarzneimittelwirkstoffen in Böden. Bodenschutz 7:141–148Google Scholar
  30. Iversen M, Kirychuk S, Drost H, Jacobson L (2000) Human health effects of dust exposure in animal confinement buildings. J Agric Saf Health 6:283–288Google Scholar
  31. Jones OA, Voulvoulis N, Lester JN (2004) Potential ecological and human health risks associated with the presence of pharmaceutically active compounds in the aquatic environment. Crit Rev Toxicol 34:335–350CrossRefGoogle Scholar
  32. Jørgensen SE, Halling-Sørensen B (2000) Drugs in the environment. Chemosphere 40:691–699CrossRefGoogle Scholar
  33. Koester CJ, Simonich SL, Esser BK (2003) Environmental analysis. Anal Chem 75:2813–2829CrossRefGoogle Scholar
  34. Kolpin DW, Furlong ET, Meyer MT, Thurman EM, Zaugg SD, Barber LB, Buxton HT (2002) Pharmaceuticals, hormones, and other organic wastewater contaminants in U.S. streams, 1999–2000: a national reconnaissance. Environ Sci Technol 36:1202–1211CrossRefGoogle Scholar
  35. Kümmerer K (ed) (2001) Pharmaceuticals in the environment: Sources, fate, effects and risks, 1st edn. Springer-Verlag, Berlin, GermanyGoogle Scholar
  36. Kümmerer K (ed) (2004) Pharmaceuticals in the environment: Sources, fate, effects and risks, 2nd edn. Springer-Verlag, Berlin, GermanyGoogle Scholar
  37. Langhammer JP, Büning-Pfaue H, Winkelmann J, Körner E (1988) Chemotherapeutika-Rückstände und Resistenzverhalten bei der Bestandsbehandlung von Sauen post partum. Tierärztl Umschau 43:375–382Google Scholar
  38. Langhammer JP, Führ F, Büning-Pfaue H (1990) Verbleib von Sulfonamid-Rückständen aus der Gülle in Boden und Nutzpflanze. Lebensmittelchem Gerichtl Chem 44:93Google Scholar
  39. Martinez-Carballo E, Gonzalez-Barreiro C, Scharf S, Gans O (2007) Environmental monitoring study of selected veterinary antibiotics in animal manure and soils in Austria. Environ Pollut, doi:10.1016/j.envpol.2006.11.035Google Scholar
  40. Merchant JA, Naleway AL, Svendsen ER, Kelly KM, Burmeister LF, Stromquist AM, Taylor CD, Thorne PS, Reynolds SJ, Sanderson WT, Chrischilles EA (2005) Asthma and farm exposures in a cohort of rural Iowa children. Environ Health Persp 113:350–356Google Scholar
  41. Nowak D (1998) Health effects of airborne pollutants, particularly in swine confinement stalls, from the viewpoint of occupational medicine [in German]. Deut Tierarztl Woch 105:225–234Google Scholar
  42. Pedersen S, Nonnenmann M, Rautiainen R, Demmers TG, Banhazi T, Lyngbye M (2000) Dust in pig buildings. J Agric Saf Health 6:261–274Google Scholar
  43. Platz S, Scherer M, Unshelm J (1995) Burden of fattening pigs and the environment of the pig fattening farms caused by lung-passing dust particles, pig stall specific bacteria and ammonia [in German]. Zentralbl Hyg Umweltmed 196:399–415Google Scholar
  44. Radon K, Danuser B, Iversen M, Monso E, Weber C, Hartung J, Pedersen S, Garz S, Blainey D, Rabe U, Nowak D (2002) Air contaminants in different European farming environments. Ann Agric Environ Med 9:41–48Google Scholar
  45. Sarmah AK, Meyer MT, Boxall ABA (2006) A global perspective on the use, sales, exposure pathways, occurrence, fate and effects of veterinary antibiotics (VAs) in the environment. Chemosphere 65:725–759CrossRefGoogle Scholar
  46. Schlüsener MP, Bester K, Spiteller M (2003) Determination of antibiotics from soil by pressurized liquid extraction and liquid chromatography tandem mass spectrometry. J Chromatogr A 1003:21–28CrossRefGoogle Scholar
  47. Seedorf J, Hartung J (2002) Dust and microorganisms in animal housing, 1st edn. Landwirtschaftsverlag GmbH, Münster, Germany (KTBL Schrift 393, in German)Google Scholar
  48. Sumpter JP, Johnson AC (2005) Lessons from endocrine disruption and their application to other issues concerning trace organics in the aquatic environment. Environ Sci Technol 39:4321–4332CrossRefGoogle Scholar
  49. Takai H, Pedersen S, Johnsen JO, Metz JHM, Koerkamp PWGG, Uenk GH, Phillips VR, Holden MR, Sneath RW, Short JL, White RP, Hartung J, Seedorf J, Schroder M, Linkert KH, Wathes CM (1998) Concentrations and emissions of airborne dust in livestock buildings in northern Europe. J Agricult Engineer Res 70:59–77CrossRefGoogle Scholar
  50. Thiele-Bruhn S (2003) Pharmaceutical antibiotic compounds in soils – a review. J Plant Nutr Soil Sc 166:145–167CrossRefGoogle Scholar
  51. Winckler C, Grafe A (2001) Use of veterinary drugs in intensive animal production – evidence for persistence of tetracycline in pig slurry. J Soils Sediments 1:66–70CrossRefGoogle Scholar
  52. Zahn JA, Anhalt J, Boyd E (2001) Evidence for transfer of tylosin and tylosin-resistant bacteria in air from swine production facilities using sub-therapeutic concentrations of tylosin in feed [Abstract]. J Anim Sci 79:189Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • G. Hamscher
    • 1
  • J. Hartung
    • 2
  1. 1.University of Veterinary Medicine Foundation Institute for Food Toxicology30173 HannoverGermany
  2. 2.University of Veterinary Medicine Foundation Insitute for Animal Hygiene Animal Welfare and Behaviour of Farm Animals30559 HannoverGermany

Personalised recommendations