Advertisement

Keywords

Sewage Sludge Sewage Treatment Plant Environ Toxicol Liquid Manure Oxolinic Acid 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Al-Ahmad A, Daschner F D, Kümmerer K (1999) Biodegradability of cefotiam, ciprofloxacin, meropenem, penyicillin G and sulfamethoxazole and inhibition of waste water bacteria. Arch Environ Contam Toxicol 37:158–163CrossRefGoogle Scholar
  2. Alexy R (2003) Antibiotika in der aquatischen Umwelt: Eintrag, Elimination und Wirkung auf Bakterien. Thesis. Albert-Ludwigs-Universität, FreiburgGoogle Scholar
  3. Alexy R, Kümmerer K (2006) Antibiotics for Human Use. In: Reemtsma, T, Jekel M (eds) Organic pollutants in the water cycle. Wiley VCH, WeinheimGoogle Scholar
  4. Alexy R, Schöll A, Kümpel T, Kümmerer K (2003) Antibiotics in the aquatic environment: Testing the biodegradability of selected antibiotics, their occurrence in waste water, their potential impact on the purification performance of municipal sewage treatment plants and identification of associated risks. Final Report. F&E 298 63 722, Federal Environmental Agency, Berlin (in German)Google Scholar
  5. Alexy R, Kümpel T, Kümmerer K (2004) Assessment of degradation of 18 antibiotics in the Closed Bottle Test. Chemosphere 57:505–512CrossRefGoogle Scholar
  6. Arslan-Alaton I, Caglayan AE (2006) Toxicity and biodegradability assessment of raw and ozonated procaine penicillin G formulation effluent. Ecotoxicol Environ Saf 63:131–140CrossRefGoogle Scholar
  7. Batt AL, Aga D (2005) Simultaneous analysis of multiple classes of antibiotics by ion trap LC/MS/MS for assessing surface water and groundwater contamination. Anal Chem.77:2940–2947CrossRefGoogle Scholar
  8. Björklund H, Råbergh C M I, Bylund G (1991) Residues of oxytetracycline in wild fish and sediments from fish farms. Aquaculture 86:359–367CrossRefGoogle Scholar
  9. Boree AL, Arnold WA, McNeill K (2004) Photochemical fate of sulfa drugs in the aquatic environment: sulfa drugs containing five-membered heterocycylic groups. Environ Sci Technol 38:3933–3940CrossRefGoogle Scholar
  10. Botitsi E, Frosyni C, Tsipi D (2007) Determination of pharmaceuticals from different therapeutic classes in wastewaters by liquid chromatography-electrospray ionization-tandem mass spectrometry. Anal Bioanal Chem 387:1317–1327CrossRefGoogle Scholar
  11. Boxall A B A, Kolpin D W, Halling-Sørensen B, Tolls J (2003a) Are veterinary medicines causing environmental risks? Environ Sci Technol 37:286A–294AGoogle Scholar
  12. Boxall ABA, Fogg LA, Kay P, Blackwell PA, Pemberton EJ, Croxford A (2003b) Veterinary medicines in the environment. Rev Environ Contam Toxicol 180:1–91Google Scholar
  13. Brown KD, Kulis J, Thomson B, Chapman TH, Mawhinney DB (2006) Occurrence of 24 antibiotics in hospital, residential, and dairy effluent, municipal wastewater, and the Rio Grande in New Mexico. Sci Tot Environ 366:772–783CrossRefGoogle Scholar
  14. Burhenne J, Ludwig M, Spiteller M (1997a) Photolytic degradation of fluoroquinolone carboxylic acids in aqueous solution. Isolation and structural elucidation of polar photometabolites. Environ Sci Pollut Res 4:61Google Scholar
  15. Burhenne J, Ludwig M, Nikoloudis P, Spiteller M (1997b) Photolytic degradation of fluoroquinolone carboxylic acids in aqueous solution. Primary photoproducts and half-lives. Environ Sci Pollut Res:10Google Scholar
  16. Calamari D, Zuccato E, Castiglioni S, Bagnati R, Fanelli R (2003) strategic survey of therapeutic drugs in the rivers Po and Lambro in northern Italy. Environ Sci Technol 37:1241–1248CrossRefGoogle Scholar
  17. Capone D G, Weston D P, Miller V, Shoemaker C (1996) Antibacterial residues in marine sediments and invertebrates following chemotherapy in aquaculture. Aquaculture 145:55–75CrossRefGoogle Scholar
  18. Carucci A, Cappai G, Piredda M (2006) Biodegradability and toxicity of pharmaceuticals in biological wastewater treatment plants. Environ Sci Health A Tox Hazard Subst Environ Eng 41:1831–1842Google Scholar
  19. Cars O, Mölstadt S, Melander A (2001) Variation in antibiotic use in the European Union. Lancet 357:1851–1853CrossRefGoogle Scholar
  20. Christian T, Schneider R J, Färber H A, Skutlarek D, Meyer M T, Goldbach H E (2003) Determination of antibiotic residues in manure, soil, and surface waters. Acta Hydrochim Hydrobiol 31:6–44CrossRefGoogle Scholar
  21. Coqgor EU, Karahan O, Arslan-Alaton I, Meric S, Saruhan H, Orhon D (2006) Effect of perozonation on biodegradability and toxicity of a penicillin formulation effluent. J Environ Sci Health A Tox Hazard Subst Environ Eng 41:1887–1897Google Scholar
  22. Coyne R, Hiney M, O’ Conner B, Cazabon D, Smith P (1994) Concentration and persistence of oxytetracycline in sediments under a marine salmon farm. Aquaculture 123:31–42CrossRefGoogle Scholar
  23. Dolliver H, Kumar K, Gupta S (2007) Sulfamethazine uptake by plants from manure-amended soil. J Environ Qual 36:1224–1230CrossRefGoogle Scholar
  24. Donoho A L (1984) Biochemical studies on the fate of monensin in animals and in the environment. J Anim Sci 58:1528–1539Google Scholar
  25. Edhlund BL, Arnold WA, McNeill K (2006) Aquatic photochemistry of nitrofuran antibiotics. Environ Sci Technol 40:5422–5427CrossRefGoogle Scholar
  26. European Federation of Animal Health (FEDESA) (1997) Antibiotics and animals. FEDESA/FEFANA Press release, Brussels, 8 SeptemberGoogle Scholar
  27. European Federation of Animal Health (FEDESA) (2001) Antibiotic use in farm animals does not threaten human health. FEDESA/FEFANA Press release, Brussels, 13 JulyGoogle Scholar
  28. Färber H (2002) Antibiotika im Krankenhausabwasser. Hyg Med 27:35Google Scholar
  29. Ferber D (2003) Antibiotic resistance. WHO advices kicking the livestock antibiotic habit. Science 301:1027SCrossRefGoogle Scholar
  30. Gartiser S, Urich E, Alexy R, Kümmerer K (2007b) Anaerobic inhibition and biodegradation of antibiotics in ISO test schemes. Chemosphere 66:1839–1848Google Scholar
  31. Gavalchin J, Katz SE (1994) The persistence of faecal-borne antibiotics in soil. J Assoc Offic Anal Chem Internat 77:481–485Google Scholar
  32. Giger W, Alder AC, Golet EM, Kohler H-PE, McArdell ChS, Molnar E, Siegrist H, Suter M J-F (2003) Occurrence and fate of antibiotics as trace contaminants in wastewaters, sewage sludges, and surface waters. Chimia 57:485–491CrossRefGoogle Scholar
  33. Gilbertson TJ, Hornish RE, Jaglan PS, Koshy KT, Nappier JL, Stahl GL, Cazers AR, Napplier JM, Kubicek MF, Hoffman GA, Hamlow PJ (1990) Environmental fate of ceftiofur sodium, a cephalosporin antibiotic. Role of animal excreta in its decomposition. J Agric Food Chem 38:890–894CrossRefGoogle Scholar
  34. Golet EM, Strehler A, Alder AC, Giger W (2002): Determination of fluoroquinolone antibacterial agents in sewage sludge and sludge-treated soil using accelerated solvent extraction followed by solid-phase extraction. Anal Chem 74:5455–5462CrossRefGoogle Scholar
  35. González O, Sans C, Esplugas S (2007) Sulfamethoxazole abatement by photo-Fenton toxicity, inhibition and biodegradability assessment of intermediates. J Hazard Mater 146:459–456CrossRefGoogle Scholar
  36. Goossens H, Ferech M, Vander Stichele R, Elseviers M, ESAC Project Group (2005) Outpatient antibiotic use in Europe and association with resistance: a cross-national database study. Lancet 365:579–587Google Scholar
  37. Grote M, Schwake-Anduschus, Michel R,Stevens H, Heyser W, Langenkämper G, Betsche, T, Freitag M (2007) Incorporation of veterinary antibiotics into crops from manured soil. FAL Agricult Res 57:25–32Google Scholar
  38. Halling-Sørensen B (2000) Algal toxicity of antibacterial agents used in intensive farming. Chemosphere 40:731–739CrossRefGoogle Scholar
  39. Halling-Sørensen B (2001) Inhibition of aerobic growth and nitrification of bacteria in sewage sludge by antibacterial agents. Arch Environ Contam Toxicol 40:451–460CrossRefGoogle Scholar
  40. Hamscher G, Sczesny S, Abu-Qare A, Höper H, Nau H (2000) Stoffe mit pharmakologischer Wirkung einschlieβlich hormonell aktiver Substanzen in der Umwelt: Nachweis von Tetracyclinen in güllegedüngten Böden. Dtsch tierärztl Wschr 10:293–348Google Scholar
  41. Hamscher G, Sczesny S, Höper H, Nau H (2002) Determination of persistent tetracycline residues in soil fertilized with liquid manure by high-performance liquid chromatography with electrospray ionization tandem mass spectrometry. Anal Chem 74:1509–1518CrossRefGoogle Scholar
  42. Hansen PK, Lunestad BT, Samuelsen OB (1992) Effects of oxytetracycline, oxolinic acid and flumequine on bacteria in an artificial marine fish farm sediment. Can J Microbiol 38:1307–1312CrossRefGoogle Scholar
  43. Hartmann A, Alder AC, Koller T, Widmer RM (1998) Identification of fluoroquinolone antibiotics as the main source of umuC genotoxicity in native hospital wastewater. Environ Toxicol Chem 17:377–382CrossRefGoogle Scholar
  44. Heise J, Höltge S, Schrader S, Kreuzig R (2006) Chemical and biological characterization of non-extractable sulfonamide residues in soil. Chemosphere 65:2352–2347CrossRefGoogle Scholar
  45. Hektoen H, Berge JA, Hormazabal V, Yndestad M (1995) Persistence of antibacterial agents in marine sediments. Aquaculutre 133:175–184CrossRefGoogle Scholar
  46. Hernández F, Sancho JV, Ibánez M, Guerrero C (2007) Antibiotic residue determination 5 in environmental waters by LC-MS. Trends Anal Chem 26:466–485CrossRefGoogle Scholar
  47. Hirsch R, Ternes T, Haberer K, Kratz K L (1999) Occurrence of antibiotics in the aquatic environment. Sci. Tot. Environ. 225:109–118CrossRefGoogle Scholar
  48. House of Lords (UK) (1998). House of Lords Select Committee on Science and Technology. 7th Report. The Stationery Office, LondonGoogle Scholar
  49. Hu D, Coats JR (2007) Aerobic degradation and photolysis of tylosin in water and soil. Environ Toxicol Chem 26:884–889CrossRefGoogle Scholar
  50. Iskender G, Sezer A, Arslan-Alaton I, Germirli Babuna F, Okay OS (2007) Treatability of cefazolin antibiotic formulation effluent with O3 and O3/H2O2 processes. Water Sci Technol 55:217–225Google Scholar
  51. Ingerslev F, Toräng, Loke ML, Halling-Sørensen B, Nyholm N (2001) Primary biodegradation of veterinary antibiotics in aerobic and anaerobic surface water simulation systems. Chemosphere 44:865–872Google Scholar
  52. Ingerslev F, Halling-Sørensen B (2001) Biodegradability of metronidazole, olaqiondox, and tylosin, and formation of tylosin degradation products in aerobic soil/manure slurries. Ecotox Environ Saf 48:311–320CrossRefGoogle Scholar
  53. Jacobsen P, Berglind L (1988) Persistence of oxytetracyline in sediment from fish farms. Aquaculture 70:365–370CrossRefGoogle Scholar
  54. Jacobsen AM, Halling-Sørensen B, Ingerslev F, Hansen SH (2004) Simultaneous extraction of tetracycline, macrolide and sulfonamide antibiotics from agricultural soils using pressurized liquid extraction, followed by solid-phase extraction and liquid chromatography tandem mass spectrometry. J Chromatogr A 1038:157-170CrossRefGoogle Scholar
  55. Junker T, Alexy R, Knacker T, Kümmerer K (2006) Biodegradability of 14C-labelled antibiotics in a modified laboratory scale sewage treatment plant at environmentally relevant concentrations. Environ Sci Technol 40:318–326CrossRefGoogle Scholar
  56. Kim SC, Carlson K (2007) Temporal and spatial trends in the occurrence of human and veterinary antibiotics in aqueous and river sediment matrices. Environ Sci Technol 41:50–57CrossRefGoogle Scholar
  57. Kim S, Eichhorn P, Jensen JN, Weber AS, Aga DS (2005) Removal of antibiotics in wastewater: Effect of hydraulic and solid retention times on the fate of tetracycline in the activated sludge process. Environ Sci Technol 39:5816–5823Google Scholar
  58. Kolpin DW, Furlong ET, Meyer MT, Thurman EM, Zaugg SD, Barber LB, Buxton HT (2002) Pharmaceuticals, hormones, and others organic wastewater contaminants in U.S. streams, 1999–2000: a national reconnaissance. Environ Sci Technol 36:1202–1211CrossRefGoogle Scholar
  59. Kreuzig R, Höltge S (2005) Investigations on the fate of sulfadiazine in manured soil: laboratory experiments and test plot studies. Environ Toxicol Chem 24:771–776CrossRefGoogle Scholar
  60. Kümmerer K, Henninger A (2003) Promoting resistance by the emission of antibiotics from hospitals and households into effluents. Clin Microbiol Inf 9:1203–1214CrossRefGoogle Scholar
  61. Kümmerer K, Al-Ahmad A, Mersch-Sundermann V (2000) Biodegradability of some antibiotics, elimination of the genotoxicity and affection of wastewater bacteria in a simple test. Chemosphere 40:701–710CrossRefGoogle Scholar
  62. Kumar K, Gupta SC, Baidoo SK, Chander Y, Rosen CJ (2005) Antibiotic uptake by plants from soil fertilized with animal manure. Environ Qual 34:2082–2085CrossRefGoogle Scholar
  63. Längin A, Alexy R, König A, Kümmerer K (2008) Incomplete, different aerobic biotic and non biotic transformation of the βlactams piperacillin and amoxicillin in environmental biodegradation testing. Submitted Larsson DG, de Pedro C, Paxeus N (2007) Effluent from drug manufactures contains extremely high levels of pharmaceuticals. J Hazard Mater 148:751–755Google Scholar
  64. Li D, Yang M, Hu J, Ren L, Zhang, Y, Chang H, Li K (2008) Determination and fate of oxytetracycline and related compounds in oxyteracycline production wastewater and the receiving river. Environ Tox Chem 27:80–86CrossRefGoogle Scholar
  65. Li D, Yang M, Hu J, Ren L, Zhang, Y, Chang H, Jin F (2008) Determination of penicillin G and its degradation products in a penicillin production wastewater treatment plant and the receiving river. Water Res 42:307–317CrossRefGoogle Scholar
  66. Lindberg R, Jarnheimer P-A, Olsen B, Johansson M, Tysklind M (2004) Determination of antibiotic substances in hospital sewage water using solid phase extraction and liquid chromatography/mass spectrometry and group analogue internal standards. Chemosphere 57:1479–1488CrossRefGoogle Scholar
  67. Lunestad B T, Goksøyr J (1990) Reduction in the antibacterial effect of oxytetracycline in sea water by complex formation with magnesium and calcium. Dis Aquatic Organisms 9:67–72CrossRefGoogle Scholar
  68. Lunestad BT, Samuelsen OB, Fjelde S, Ervik A (1995) Photostability of eight antibacterial agents in seawater. Aquaculture 134:217–225CrossRefGoogle Scholar
  69. Marengo JR, O’ Brian RA, Velagaleti RR, Stamm JM (1997) Aerobic biodegradation of (14C)-sarafloxacin hydrochloride in soil. Environ Toxicol Chem 16:462–471CrossRefGoogle Scholar
  70. Martínez-Carballo E, González-Barreiro C, Scharf S, Gans O (2007) Environmental monitoring study of selected veterinary antibiotics in animal manure and soils in Austria. Environ Poll 148:570–579CrossRefGoogle Scholar
  71. Martins AF, Vasconcelos TG, Henriques DM, da Silveira Frank C, König A, Kümmerer K (2008) Concentration of ciprofloxacin in Brazilian hospital effluent and preliminary environmental risk assessment. CLEAN, in pressGoogle Scholar
  72. McManus PS, Stockwell VO, Sundin GW, Jones AL (2002) Antibiotic use in plant agriculture. Ann Rev Phytopathol 40:443–465CrossRefGoogle Scholar
  73. Mellon M et al. (2001) Hogging it! Estimates of antimicrobial abuse in livestock, 1st edn. Union of Concerned Scientists, Cambridge, MAGoogle Scholar
  74. Miao X-S, Bishay F, Chen M, Metcalfe CD (2004) Occurrence of Antimicrobials in the final effluents of waste water treatment plants in Canada. Environ Sci Technol 38:3533–3541CrossRefGoogle Scholar
  75. Migliore L, Lorenzi C, Civitareale C, Laudi O, Brambilla G (1995) La flumequina e gli ecosystemi marini: emissione con l’acquacoltura e tossicita su Artemia salina(L.). Atti. S.I.T.E. 16Google Scholar
  76. Mölstad S, Lundborg CS, Karlsson AK, Cars O (2002) Antibiotic prescription rates vary markedly between 13 European countries. Scandinavian J Inf Dis 34:366–371CrossRefGoogle Scholar
  77. Oka H, Ikai Y, Kawamura N, Yamada M, Harada K, Ito S, Suzuki M (1989) Photodecomposition products of tetracycline in aqueous solution. J Agric Food Chem 37:226–231CrossRefGoogle Scholar
  78. Parshikov IA, Freeman JP, Lay JO, Beger RD, Williams AJ, Sutherland JB (2000) Microbial transformation of enrofloxacin by the fungus Mucor rammannianus. Appl Environ Microbiol 66:2664–2667CrossRefGoogle Scholar
  79. Pouliquen H, Le Bris H, Pinault L (1992) Experimental study of the therapeutic application of oxytetracycline, its attenuation in sediment and sea water, and implication for farm culture of benthic organisms. Mar Ecol Progr Ser 89:93–98CrossRefGoogle Scholar
  80. Rabølle M, Spliid NH (2000) Sorption and mobility of metronidazole, olaquindox, oxytetracycline and tylosin in soil. Chemosphere 40:715–722CrossRefGoogle Scholar
  81. Richardson ML, Bowron JM (1985) The fate of pharmaceutical chemicals in the environment. J Pharm.Pharmacol 37:1–12Google Scholar
  82. Rönnefahrt I (2005) Verbrauchsmengen in der Bewertung des Umweltrisikos von Humanarzneimitteln, In: Umweltbundesamt (Hrsg) Arzneimittel in der Umwelt – Zu Risiken und Nebenwirkungen fragen Sie das Umweltbundesamt, Dessau (UBA Texte 29/05)Google Scholar
  83. Samuelsen OB (1989) Degradation of oxytetracycline in seawater at two different temperatures and light intensities, and the persistence of oxytetracycline in the sediment from a fish farm. Aquaculture 83:7–16CrossRefGoogle Scholar
  84. Samuelsen OB, Solheim E, Lunestad BT (1991) Fate and microbiological effects of furazolidone in a marine aquaculture sediment. Sci Tot Environ 108:275–283CrossRefGoogle Scholar
  85. Samuelsen OB, Torsvik V, Ervik A (1992) Long-range changes in oxytetracycline concentration and bacterial resistance towards oxytetracycline in fish farm sediment after medication. Sci Tot Environ 114:25–36CrossRefGoogle Scholar
  86. Samuelsen OB, Lunestad BT, Fjelde S (1994) Stability of antibacterial agents in an artificial marine aquaculture sediment studied under laboratory conditions. Aquaculture 126:183–290CrossRefGoogle Scholar
  87. Sarmah AK, Meyer MT, Boxall ABA (2006) A global perspective on the use, sales, exposure pathways, occurrence, fate and effects of veterinary antibiotics (VAs) Chemosphere 65:725–759CrossRefGoogle Scholar
  88. Sattelberger S (1999) Arzneimittelrückstände in der Umwelt, Bestandsaufnahme und Problemstellung. Report des Umweltbundesamtes österreich, WienGoogle Scholar
  89. Schmidt B, Ebert J, Lamshöft M, Thiede B, Schumacher-Buffel R, Ji R, Corvini PF, Schäffer A (2008) Fate in soil of (14)C-sulfadiazine residues contained in the manure of young pigs treated with a veterinary antibiotic. J Environ Sci Health B 43:8–20CrossRefGoogle Scholar
  90. Serrano PH (2005) Responsible Use of Antibiotics in Aquaculture. Fisheries Technical Paper 469, Food and Agriculture Organization of the United Nations (FAO), RomeGoogle Scholar
  91. Simon M, Lukow T, Hund-Rinke K (2003) Auswirkungen von Tetracyclin auf Bodenmikroorganismen (Funktion, Diversität, Resistenzen). 8. Deutschsprachige SETAC-Tagung, Heidelberg, 21–23 September 2003. Proceedings, Abstract p 111Google Scholar
  92. Sukul P, Lamshöft M, Zühlke S, Spiteller M (2008) Photolysis of (14)C-sulfadiazine in water and manure. Chemosphere 2007 Dec 10; [Epub ahead of print]Google Scholar
  93. Thomas KV, Dye C, Schlabach M, Langford KH (2007) Source to sink tracking of selected human pharmaceuticals from two Oslo city hospitals and a wastewater treatment works. J Environ Monit 9:1410–1418CrossRefGoogle Scholar
  94. The Council of the European Union (2002) Council recommendation of 15 November 2001 on the prudent use of antimicrobial agents in human medicine (Text with EEA relevance). 2002/77/EC. 5 February, Brussels, BelgiumGoogle Scholar
  95. Thiele-Bruhn S (2003) Pharmaceutical antibiotic compounds in soils – a review. J Plant Nutr Soil Sci 166:145–167CrossRefGoogle Scholar
  96. Tolls J (2001) Sorption of veterinary pharmaceuticals in soils: a review. Environ Sci Technol 35:3397–3406CrossRefGoogle Scholar
  97. Turiel E, Bordin G, Rodríguez AR (2005a) Determination of quinolones and fluoroquinolones in hospital sewage water by off-line and on-line solid-phase extraction procedures coupled to HPLC-UV. J Sep Sci 28:257–267Google Scholar
  98. Turiel E, Bordin G, Rodríguez AR (2005b) Study of the evolution and degradation products of ciprofloxacin and oxolinic acid in river water samples by HPLC-UV/MS/MS-MS. J Environ Monit 7:189–195Google Scholar
  99. Union of Concerned Scientists (2001) 70 Percent of all Antibiotics Given to Healthy Livestock. Press release, 8 January, Cambridge, MAGoogle Scholar
  100. Vasconcelos TG, Henriques DM, König A, Kümmerer K, Martins AF (2008) Photo-degradation of the antimicrobial ciprofloxacin: identification and biodegradability assessment of the primary metabolites. SubmittedGoogle Scholar
  101. Vaccheri A, Bjerrum L, Resi D, Bergman U, Montanaro N (2002) Antibiotic prescribing in general practice: striking differences between Italy (Ravenna) and Denmark (Funen). JAC 50:989–997Google Scholar
  102. Verbrugh HA, de Neeling AJ, Eds (2003) Consumption of antimicrobial agents and antimicrobial resistance among medically important bacteria in the Netherlands. SWAB NETHMAP, 2003Google Scholar
  103. Viola G, Facciolo L, Canton M, Vedaldi D, Dall’Acqua F, Aloisi GG, Amelia M, Barbafina A, Elisei F, Latterini L (2004) Photophysical and phototoxic properties of the antibacterial fluoroquinolones levofloxacin and moxifloxacin. Chem Biodivers 1:782–801CrossRefGoogle Scholar
  104. Watts CD, Crathorne M, Fielding M, Steel CP (1983) Identification of non-volatile organics in water using field desorption mass spectrometry and high performance liquid chromatography. Analysis of Organic Micropollutants in Water. Reidel Publ. Corp., Dordrecht, pp 120–131Google Scholar
  105. Weerasinghe CA, Towner D (1997) Aerobic biodegradation of virginiamycin in soil. Environ Toxicol Chem 16:1873–1876CrossRefGoogle Scholar
  106. Werner JJ, Arnold WA, McNeill K (2006)Water hardness as a photochemical parameter: tetracycline photolysis as a function of calcium concentration, magnesium concentration, and pH. Environ Sci Technol 40:7236–7241CrossRefGoogle Scholar
  107. Werner JJ, Chintapalli M, Lundeen RA, Wammer KH, Arnold WA, McNeill K (2007) Environmental photochemistry of tylosin: efficient, reversible photoisomerization to a less-active isomer, followed by photolysis. J Agric Food Chem 55:7062–7068CrossRefGoogle Scholar
  108. Wetzstein HG, Schmeer N, Karl W (1997) Degradation of the fluoroquinolone enrofloxacin by the brown rot fungus Gloeophyllum striatum: identification of metabolites. Appl Environ Microbiol 63:4272–4281Google Scholar
  109. Wetzstein H-G, Stadler M, Tichy H-V, Dalhoff A, Karl W (1999) Degradation of ciprofloxacin by basidiomycetes and identification of metabolites generated by the brown rot fungus. Appl Environ Microbiol 65:1556–1563Google Scholar
  110. Wiethan J, Al-Ahmad A, Henninger A, Kümmerer K (2000) Simulation des Selektionsdrucks der Antibiotika Ciprofloxacin und Ceftazidim in Oberflächengewässern mittels klassischer Methoden. Vom Wasser 95:107–118Google Scholar
  111. de Wirth K, Schröder H, Meyer E, Nink K, Hofman S, Steib-Bauert M, Kämmerer R, Rueβ S, Daschner FD, Kern WV (2004) Antibiotic use in Germany and Europe. Deutsch Med Wochenschr 129:1987–1992CrossRefGoogle Scholar
  112. Wise R (2002) Antimicrobial resistance: priorities for action. J Antimicrob Chemoth 49: 585–86CrossRefGoogle Scholar
  113. Xu WH, Zhang G, Zou SC, Li XD, Liu YC (2007) Determination of selected antibiotics in the Victoria Harbour and the Pearl River, South China using high-performance liquid chromatographyelectrospray ionization tandem mass spectrometry. Environ Pollut 145:672–679CrossRefGoogle Scholar
  114. Ye Z, Weinberg HS, Meyer MT (2007) Trace analysis of trimethoprim and sulfonamide, macrolide, quinolone, and tetracycline antibiotics in chlorinated drinking water using liquid chromatography electrospray tandem mass spectrometry. Anal Chem 79:1135–1144CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • K. Kümmerer
    • 1
  1. 1.Department of Environmental Health SciencesUniversity Medical Center FreiburgGermany

Personalised recommendations