Skip to main content

Antibiotics in the Environment

  • Chapter
Pharmaceuticals in the Environment

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Al-Ahmad A, Daschner F D, Kümmerer K (1999) Biodegradability of cefotiam, ciprofloxacin, meropenem, penyicillin G and sulfamethoxazole and inhibition of waste water bacteria. Arch Environ Contam Toxicol 37:158–163

    Article  CAS  Google Scholar 

  • Alexy R (2003) Antibiotika in der aquatischen Umwelt: Eintrag, Elimination und Wirkung auf Bakterien. Thesis. Albert-Ludwigs-Universität, Freiburg

    Google Scholar 

  • Alexy R, Kümmerer K (2006) Antibiotics for Human Use. In: Reemtsma, T, Jekel M (eds) Organic pollutants in the water cycle. Wiley VCH, Weinheim

    Google Scholar 

  • Alexy R, Schöll A, Kümpel T, Kümmerer K (2003) Antibiotics in the aquatic environment: Testing the biodegradability of selected antibiotics, their occurrence in waste water, their potential impact on the purification performance of municipal sewage treatment plants and identification of associated risks. Final Report. F&E 298 63 722, Federal Environmental Agency, Berlin (in German)

    Google Scholar 

  • Alexy R, Kümpel T, Kümmerer K (2004) Assessment of degradation of 18 antibiotics in the Closed Bottle Test. Chemosphere 57:505–512

    Article  CAS  Google Scholar 

  • Arslan-Alaton I, Caglayan AE (2006) Toxicity and biodegradability assessment of raw and ozonated procaine penicillin G formulation effluent. Ecotoxicol Environ Saf 63:131–140

    Article  CAS  Google Scholar 

  • Batt AL, Aga D (2005) Simultaneous analysis of multiple classes of antibiotics by ion trap LC/MS/MS for assessing surface water and groundwater contamination. Anal Chem.77:2940–2947

    Article  CAS  Google Scholar 

  • Björklund H, Råbergh C M I, Bylund G (1991) Residues of oxytetracycline in wild fish and sediments from fish farms. Aquaculture 86:359–367

    Article  Google Scholar 

  • Boree AL, Arnold WA, McNeill K (2004) Photochemical fate of sulfa drugs in the aquatic environment: sulfa drugs containing five-membered heterocycylic groups. Environ Sci Technol 38:3933–3940

    Article  CAS  Google Scholar 

  • Botitsi E, Frosyni C, Tsipi D (2007) Determination of pharmaceuticals from different therapeutic classes in wastewaters by liquid chromatography-electrospray ionization-tandem mass spectrometry. Anal Bioanal Chem 387:1317–1327

    Article  CAS  Google Scholar 

  • Boxall A B A, Kolpin D W, Halling-Sørensen B, Tolls J (2003a) Are veterinary medicines causing environmental risks? Environ Sci Technol 37:286A–294A

    Google Scholar 

  • Boxall ABA, Fogg LA, Kay P, Blackwell PA, Pemberton EJ, Croxford A (2003b) Veterinary medicines in the environment. Rev Environ Contam Toxicol 180:1–91

    Google Scholar 

  • Brown KD, Kulis J, Thomson B, Chapman TH, Mawhinney DB (2006) Occurrence of 24 antibiotics in hospital, residential, and dairy effluent, municipal wastewater, and the Rio Grande in New Mexico. Sci Tot Environ 366:772–783

    Article  CAS  Google Scholar 

  • Burhenne J, Ludwig M, Spiteller M (1997a) Photolytic degradation of fluoroquinolone carboxylic acids in aqueous solution. Isolation and structural elucidation of polar photometabolites. Environ Sci Pollut Res 4:61

    Google Scholar 

  • Burhenne J, Ludwig M, Nikoloudis P, Spiteller M (1997b) Photolytic degradation of fluoroquinolone carboxylic acids in aqueous solution. Primary photoproducts and half-lives. Environ Sci Pollut Res:10

    Google Scholar 

  • Calamari D, Zuccato E, Castiglioni S, Bagnati R, Fanelli R (2003) strategic survey of therapeutic drugs in the rivers Po and Lambro in northern Italy. Environ Sci Technol 37:1241–1248

    Article  CAS  Google Scholar 

  • Capone D G, Weston D P, Miller V, Shoemaker C (1996) Antibacterial residues in marine sediments and invertebrates following chemotherapy in aquaculture. Aquaculture 145:55–75

    Article  CAS  Google Scholar 

  • Carucci A, Cappai G, Piredda M (2006) Biodegradability and toxicity of pharmaceuticals in biological wastewater treatment plants. Environ Sci Health A Tox Hazard Subst Environ Eng 41:1831–1842

    CAS  Google Scholar 

  • Cars O, Mölstadt S, Melander A (2001) Variation in antibiotic use in the European Union. Lancet 357:1851–1853

    Article  CAS  Google Scholar 

  • Christian T, Schneider R J, Färber H A, Skutlarek D, Meyer M T, Goldbach H E (2003) Determination of antibiotic residues in manure, soil, and surface waters. Acta Hydrochim Hydrobiol 31:6–44

    Article  Google Scholar 

  • Coqgor EU, Karahan O, Arslan-Alaton I, Meric S, Saruhan H, Orhon D (2006) Effect of perozonation on biodegradability and toxicity of a penicillin formulation effluent. J Environ Sci Health A Tox Hazard Subst Environ Eng 41:1887–1897

    Google Scholar 

  • Coyne R, Hiney M, O’ Conner B, Cazabon D, Smith P (1994) Concentration and persistence of oxytetracycline in sediments under a marine salmon farm. Aquaculture 123:31–42

    Article  CAS  Google Scholar 

  • Dolliver H, Kumar K, Gupta S (2007) Sulfamethazine uptake by plants from manure-amended soil. J Environ Qual 36:1224–1230

    Article  CAS  Google Scholar 

  • Donoho A L (1984) Biochemical studies on the fate of monensin in animals and in the environment. J Anim Sci 58:1528–1539

    CAS  Google Scholar 

  • Edhlund BL, Arnold WA, McNeill K (2006) Aquatic photochemistry of nitrofuran antibiotics. Environ Sci Technol 40:5422–5427

    Article  CAS  Google Scholar 

  • European Federation of Animal Health (FEDESA) (1997) Antibiotics and animals. FEDESA/FEFANA Press release, Brussels, 8 September

    Google Scholar 

  • European Federation of Animal Health (FEDESA) (2001) Antibiotic use in farm animals does not threaten human health. FEDESA/FEFANA Press release, Brussels, 13 July

    Google Scholar 

  • Färber H (2002) Antibiotika im Krankenhausabwasser. Hyg Med 27:35

    Google Scholar 

  • Ferber D (2003) Antibiotic resistance. WHO advices kicking the livestock antibiotic habit. Science 301:1027S

    Article  Google Scholar 

  • Gartiser S, Urich E, Alexy R, Kümmerer K (2007b) Anaerobic inhibition and biodegradation of antibiotics in ISO test schemes. Chemosphere 66:1839–1848

    Google Scholar 

  • Gavalchin J, Katz SE (1994) The persistence of faecal-borne antibiotics in soil. J Assoc Offic Anal Chem Internat 77:481–485

    CAS  Google Scholar 

  • Giger W, Alder AC, Golet EM, Kohler H-PE, McArdell ChS, Molnar E, Siegrist H, Suter M J-F (2003) Occurrence and fate of antibiotics as trace contaminants in wastewaters, sewage sludges, and surface waters. Chimia 57:485–491

    Article  CAS  Google Scholar 

  • Gilbertson TJ, Hornish RE, Jaglan PS, Koshy KT, Nappier JL, Stahl GL, Cazers AR, Napplier JM, Kubicek MF, Hoffman GA, Hamlow PJ (1990) Environmental fate of ceftiofur sodium, a cephalosporin antibiotic. Role of animal excreta in its decomposition. J Agric Food Chem 38:890–894

    Article  CAS  Google Scholar 

  • Golet EM, Strehler A, Alder AC, Giger W (2002): Determination of fluoroquinolone antibacterial agents in sewage sludge and sludge-treated soil using accelerated solvent extraction followed by solid-phase extraction. Anal Chem 74:5455–5462

    Article  CAS  Google Scholar 

  • González O, Sans C, Esplugas S (2007) Sulfamethoxazole abatement by photo-Fenton toxicity, inhibition and biodegradability assessment of intermediates. J Hazard Mater 146:459–456

    Article  CAS  Google Scholar 

  • Goossens H, Ferech M, Vander Stichele R, Elseviers M, ESAC Project Group (2005) Outpatient antibiotic use in Europe and association with resistance: a cross-national database study. Lancet 365:579–587

    Google Scholar 

  • Grote M, Schwake-Anduschus, Michel R,Stevens H, Heyser W, Langenkämper G, Betsche, T, Freitag M (2007) Incorporation of veterinary antibiotics into crops from manured soil. FAL Agricult Res 57:25–32

    Google Scholar 

  • Halling-Sørensen B (2000) Algal toxicity of antibacterial agents used in intensive farming. Chemosphere 40:731–739

    Article  Google Scholar 

  • Halling-Sørensen B (2001) Inhibition of aerobic growth and nitrification of bacteria in sewage sludge by antibacterial agents. Arch Environ Contam Toxicol 40:451–460

    Article  CAS  Google Scholar 

  • Hamscher G, Sczesny S, Abu-Qare A, Höper H, Nau H (2000) Stoffe mit pharmakologischer Wirkung einschlieβlich hormonell aktiver Substanzen in der Umwelt: Nachweis von Tetracyclinen in güllegedüngten Böden. Dtsch tierärztl Wschr 10:293–348

    Google Scholar 

  • Hamscher G, Sczesny S, Höper H, Nau H (2002) Determination of persistent tetracycline residues in soil fertilized with liquid manure by high-performance liquid chromatography with electrospray ionization tandem mass spectrometry. Anal Chem 74:1509–1518

    Article  CAS  Google Scholar 

  • Hansen PK, Lunestad BT, Samuelsen OB (1992) Effects of oxytetracycline, oxolinic acid and flumequine on bacteria in an artificial marine fish farm sediment. Can J Microbiol 38:1307–1312

    Article  CAS  Google Scholar 

  • Hartmann A, Alder AC, Koller T, Widmer RM (1998) Identification of fluoroquinolone antibiotics as the main source of umuC genotoxicity in native hospital wastewater. Environ Toxicol Chem 17:377–382

    Article  CAS  Google Scholar 

  • Heise J, Höltge S, Schrader S, Kreuzig R (2006) Chemical and biological characterization of non-extractable sulfonamide residues in soil. Chemosphere 65:2352–2347

    Article  CAS  Google Scholar 

  • Hektoen H, Berge JA, Hormazabal V, Yndestad M (1995) Persistence of antibacterial agents in marine sediments. Aquaculutre 133:175–184

    Article  CAS  Google Scholar 

  • Hernández F, Sancho JV, Ibánez M, Guerrero C (2007) Antibiotic residue determination 5 in environmental waters by LC-MS. Trends Anal Chem 26:466–485

    Article  CAS  Google Scholar 

  • Hirsch R, Ternes T, Haberer K, Kratz K L (1999) Occurrence of antibiotics in the aquatic environment. Sci. Tot. Environ. 225:109–118

    Article  CAS  Google Scholar 

  • House of Lords (UK) (1998). House of Lords Select Committee on Science and Technology. 7th Report. The Stationery Office, London

    Google Scholar 

  • Hu D, Coats JR (2007) Aerobic degradation and photolysis of tylosin in water and soil. Environ Toxicol Chem 26:884–889

    Article  CAS  Google Scholar 

  • Iskender G, Sezer A, Arslan-Alaton I, Germirli Babuna F, Okay OS (2007) Treatability of cefazolin antibiotic formulation effluent with O3 and O3/H2O2 processes. Water Sci Technol 55:217–225

    CAS  Google Scholar 

  • Ingerslev F, Toräng, Loke ML, Halling-Sørensen B, Nyholm N (2001) Primary biodegradation of veterinary antibiotics in aerobic and anaerobic surface water simulation systems. Chemosphere 44:865–872

    Google Scholar 

  • Ingerslev F, Halling-Sørensen B (2001) Biodegradability of metronidazole, olaqiondox, and tylosin, and formation of tylosin degradation products in aerobic soil/manure slurries. Ecotox Environ Saf 48:311–320

    Article  CAS  Google Scholar 

  • Jacobsen P, Berglind L (1988) Persistence of oxytetracyline in sediment from fish farms. Aquaculture 70:365–370

    Article  CAS  Google Scholar 

  • Jacobsen AM, Halling-Sørensen B, Ingerslev F, Hansen SH (2004) Simultaneous extraction of tetracycline, macrolide and sulfonamide antibiotics from agricultural soils using pressurized liquid extraction, followed by solid-phase extraction and liquid chromatography tandem mass spectrometry. J Chromatogr A 1038:157-170

    Article  CAS  Google Scholar 

  • Junker T, Alexy R, Knacker T, Kümmerer K (2006) Biodegradability of 14C-labelled antibiotics in a modified laboratory scale sewage treatment plant at environmentally relevant concentrations. Environ Sci Technol 40:318–326

    Article  CAS  Google Scholar 

  • Kim SC, Carlson K (2007) Temporal and spatial trends in the occurrence of human and veterinary antibiotics in aqueous and river sediment matrices. Environ Sci Technol 41:50–57

    Article  CAS  Google Scholar 

  • Kim S, Eichhorn P, Jensen JN, Weber AS, Aga DS (2005) Removal of antibiotics in wastewater: Effect of hydraulic and solid retention times on the fate of tetracycline in the activated sludge process. Environ Sci Technol 39:5816–5823

    Google Scholar 

  • Kolpin DW, Furlong ET, Meyer MT, Thurman EM, Zaugg SD, Barber LB, Buxton HT (2002) Pharmaceuticals, hormones, and others organic wastewater contaminants in U.S. streams, 1999–2000: a national reconnaissance. Environ Sci Technol 36:1202–1211

    Article  CAS  Google Scholar 

  • Kreuzig R, Höltge S (2005) Investigations on the fate of sulfadiazine in manured soil: laboratory experiments and test plot studies. Environ Toxicol Chem 24:771–776

    Article  CAS  Google Scholar 

  • Kümmerer K, Henninger A (2003) Promoting resistance by the emission of antibiotics from hospitals and households into effluents. Clin Microbiol Inf 9:1203–1214

    Article  Google Scholar 

  • Kümmerer K, Al-Ahmad A, Mersch-Sundermann V (2000) Biodegradability of some antibiotics, elimination of the genotoxicity and affection of wastewater bacteria in a simple test. Chemosphere 40:701–710

    Article  Google Scholar 

  • Kumar K, Gupta SC, Baidoo SK, Chander Y, Rosen CJ (2005) Antibiotic uptake by plants from soil fertilized with animal manure. Environ Qual 34:2082–2085

    Article  CAS  Google Scholar 

  • Längin A, Alexy R, König A, Kümmerer K (2008) Incomplete, different aerobic biotic and non biotic transformation of the βlactams piperacillin and amoxicillin in environmental biodegradation testing. Submitted Larsson DG, de Pedro C, Paxeus N (2007) Effluent from drug manufactures contains extremely high levels of pharmaceuticals. J Hazard Mater 148:751–755

    Google Scholar 

  • Li D, Yang M, Hu J, Ren L, Zhang, Y, Chang H, Li K (2008) Determination and fate of oxytetracycline and related compounds in oxyteracycline production wastewater and the receiving river. Environ Tox Chem 27:80–86

    Article  CAS  Google Scholar 

  • Li D, Yang M, Hu J, Ren L, Zhang, Y, Chang H, Jin F (2008) Determination of penicillin G and its degradation products in a penicillin production wastewater treatment plant and the receiving river. Water Res 42:307–317

    Article  CAS  Google Scholar 

  • Lindberg R, Jarnheimer P-A, Olsen B, Johansson M, Tysklind M (2004) Determination of antibiotic substances in hospital sewage water using solid phase extraction and liquid chromatography/mass spectrometry and group analogue internal standards. Chemosphere 57:1479–1488

    Article  CAS  Google Scholar 

  • Lunestad B T, Goksøyr J (1990) Reduction in the antibacterial effect of oxytetracycline in sea water by complex formation with magnesium and calcium. Dis Aquatic Organisms 9:67–72

    Article  CAS  Google Scholar 

  • Lunestad BT, Samuelsen OB, Fjelde S, Ervik A (1995) Photostability of eight antibacterial agents in seawater. Aquaculture 134:217–225

    Article  CAS  Google Scholar 

  • Marengo JR, O’ Brian RA, Velagaleti RR, Stamm JM (1997) Aerobic biodegradation of (14C)-sarafloxacin hydrochloride in soil. Environ Toxicol Chem 16:462–471

    Article  CAS  Google Scholar 

  • Martínez-Carballo E, González-Barreiro C, Scharf S, Gans O (2007) Environmental monitoring study of selected veterinary antibiotics in animal manure and soils in Austria. Environ Poll 148:570–579

    Article  CAS  Google Scholar 

  • Martins AF, Vasconcelos TG, Henriques DM, da Silveira Frank C, König A, Kümmerer K (2008) Concentration of ciprofloxacin in Brazilian hospital effluent and preliminary environmental risk assessment. CLEAN, in press

    Google Scholar 

  • McManus PS, Stockwell VO, Sundin GW, Jones AL (2002) Antibiotic use in plant agriculture. Ann Rev Phytopathol 40:443–465

    Article  CAS  Google Scholar 

  • Mellon M et al. (2001) Hogging it! Estimates of antimicrobial abuse in livestock, 1st edn. Union of Concerned Scientists, Cambridge, MA

    Google Scholar 

  • Miao X-S, Bishay F, Chen M, Metcalfe CD (2004) Occurrence of Antimicrobials in the final effluents of waste water treatment plants in Canada. Environ Sci Technol 38:3533–3541

    Article  CAS  Google Scholar 

  • Migliore L, Lorenzi C, Civitareale C, Laudi O, Brambilla G (1995) La flumequina e gli ecosystemi marini: emissione con l’acquacoltura e tossicita su Artemia salina(L.). Atti. S.I.T.E. 16

    Google Scholar 

  • Mölstad S, Lundborg CS, Karlsson AK, Cars O (2002) Antibiotic prescription rates vary markedly between 13 European countries. Scandinavian J Inf Dis 34:366–371

    Article  Google Scholar 

  • Oka H, Ikai Y, Kawamura N, Yamada M, Harada K, Ito S, Suzuki M (1989) Photodecomposition products of tetracycline in aqueous solution. J Agric Food Chem 37:226–231

    Article  CAS  Google Scholar 

  • Parshikov IA, Freeman JP, Lay JO, Beger RD, Williams AJ, Sutherland JB (2000) Microbial transformation of enrofloxacin by the fungus Mucor rammannianus. Appl Environ Microbiol 66:2664–2667

    Article  CAS  Google Scholar 

  • Pouliquen H, Le Bris H, Pinault L (1992) Experimental study of the therapeutic application of oxytetracycline, its attenuation in sediment and sea water, and implication for farm culture of benthic organisms. Mar Ecol Progr Ser 89:93–98

    Article  CAS  Google Scholar 

  • Rabølle M, Spliid NH (2000) Sorption and mobility of metronidazole, olaquindox, oxytetracycline and tylosin in soil. Chemosphere 40:715–722

    Article  Google Scholar 

  • Richardson ML, Bowron JM (1985) The fate of pharmaceutical chemicals in the environment. J Pharm.Pharmacol 37:1–12

    CAS  Google Scholar 

  • Rönnefahrt I (2005) Verbrauchsmengen in der Bewertung des Umweltrisikos von Humanarzneimitteln, In: Umweltbundesamt (Hrsg) Arzneimittel in der Umwelt – Zu Risiken und Nebenwirkungen fragen Sie das Umweltbundesamt, Dessau (UBA Texte 29/05)

    Google Scholar 

  • Samuelsen OB (1989) Degradation of oxytetracycline in seawater at two different temperatures and light intensities, and the persistence of oxytetracycline in the sediment from a fish farm. Aquaculture 83:7–16

    Article  CAS  Google Scholar 

  • Samuelsen OB, Solheim E, Lunestad BT (1991) Fate and microbiological effects of furazolidone in a marine aquaculture sediment. Sci Tot Environ 108:275–283

    Article  CAS  Google Scholar 

  • Samuelsen OB, Torsvik V, Ervik A (1992) Long-range changes in oxytetracycline concentration and bacterial resistance towards oxytetracycline in fish farm sediment after medication. Sci Tot Environ 114:25–36

    Article  CAS  Google Scholar 

  • Samuelsen OB, Lunestad BT, Fjelde S (1994) Stability of antibacterial agents in an artificial marine aquaculture sediment studied under laboratory conditions. Aquaculture 126:183–290

    Article  Google Scholar 

  • Sarmah AK, Meyer MT, Boxall ABA (2006) A global perspective on the use, sales, exposure pathways, occurrence, fate and effects of veterinary antibiotics (VAs) Chemosphere 65:725–759

    Article  CAS  Google Scholar 

  • Sattelberger S (1999) Arzneimittelrückstände in der Umwelt, Bestandsaufnahme und Problemstellung. Report des Umweltbundesamtes österreich, Wien

    Google Scholar 

  • Schmidt B, Ebert J, Lamshöft M, Thiede B, Schumacher-Buffel R, Ji R, Corvini PF, Schäffer A (2008) Fate in soil of (14)C-sulfadiazine residues contained in the manure of young pigs treated with a veterinary antibiotic. J Environ Sci Health B 43:8–20

    Article  CAS  Google Scholar 

  • Serrano PH (2005) Responsible Use of Antibiotics in Aquaculture. Fisheries Technical Paper 469, Food and Agriculture Organization of the United Nations (FAO), Rome

    Google Scholar 

  • Simon M, Lukow T, Hund-Rinke K (2003) Auswirkungen von Tetracyclin auf Bodenmikroorganismen (Funktion, Diversität, Resistenzen). 8. Deutschsprachige SETAC-Tagung, Heidelberg, 21–23 September 2003. Proceedings, Abstract p 111

    Google Scholar 

  • Sukul P, Lamshöft M, Zühlke S, Spiteller M (2008) Photolysis of (14)C-sulfadiazine in water and manure. Chemosphere 2007 Dec 10; [Epub ahead of print]

    Google Scholar 

  • Thomas KV, Dye C, Schlabach M, Langford KH (2007) Source to sink tracking of selected human pharmaceuticals from two Oslo city hospitals and a wastewater treatment works. J Environ Monit 9:1410–1418

    Article  CAS  Google Scholar 

  • The Council of the European Union (2002) Council recommendation of 15 November 2001 on the prudent use of antimicrobial agents in human medicine (Text with EEA relevance). 2002/77/EC. 5 February, Brussels, Belgium

    Google Scholar 

  • Thiele-Bruhn S (2003) Pharmaceutical antibiotic compounds in soils – a review. J Plant Nutr Soil Sci 166:145–167

    Article  CAS  Google Scholar 

  • Tolls J (2001) Sorption of veterinary pharmaceuticals in soils: a review. Environ Sci Technol 35:3397–3406

    Article  CAS  Google Scholar 

  • Turiel E, Bordin G, Rodríguez AR (2005a) Determination of quinolones and fluoroquinolones in hospital sewage water by off-line and on-line solid-phase extraction procedures coupled to HPLC-UV. J Sep Sci 28:257–267

    Google Scholar 

  • Turiel E, Bordin G, Rodríguez AR (2005b) Study of the evolution and degradation products of ciprofloxacin and oxolinic acid in river water samples by HPLC-UV/MS/MS-MS. J Environ Monit 7:189–195

    Google Scholar 

  • Union of Concerned Scientists (2001) 70 Percent of all Antibiotics Given to Healthy Livestock. Press release, 8 January, Cambridge, MA

    Google Scholar 

  • Vasconcelos TG, Henriques DM, König A, Kümmerer K, Martins AF (2008) Photo-degradation of the antimicrobial ciprofloxacin: identification and biodegradability assessment of the primary metabolites. Submitted

    Google Scholar 

  • Vaccheri A, Bjerrum L, Resi D, Bergman U, Montanaro N (2002) Antibiotic prescribing in general practice: striking differences between Italy (Ravenna) and Denmark (Funen). JAC 50:989–997

    CAS  Google Scholar 

  • Verbrugh HA, de Neeling AJ, Eds (2003) Consumption of antimicrobial agents and antimicrobial resistance among medically important bacteria in the Netherlands. SWAB NETHMAP, 2003

    Google Scholar 

  • Viola G, Facciolo L, Canton M, Vedaldi D, Dall’Acqua F, Aloisi GG, Amelia M, Barbafina A, Elisei F, Latterini L (2004) Photophysical and phototoxic properties of the antibacterial fluoroquinolones levofloxacin and moxifloxacin. Chem Biodivers 1:782–801

    Article  CAS  Google Scholar 

  • Watts CD, Crathorne M, Fielding M, Steel CP (1983) Identification of non-volatile organics in water using field desorption mass spectrometry and high performance liquid chromatography. Analysis of Organic Micropollutants in Water. Reidel Publ. Corp., Dordrecht, pp 120–131

    Google Scholar 

  • Weerasinghe CA, Towner D (1997) Aerobic biodegradation of virginiamycin in soil. Environ Toxicol Chem 16:1873–1876

    Article  CAS  Google Scholar 

  • Werner JJ, Arnold WA, McNeill K (2006)Water hardness as a photochemical parameter: tetracycline photolysis as a function of calcium concentration, magnesium concentration, and pH. Environ Sci Technol 40:7236–7241

    Article  CAS  Google Scholar 

  • Werner JJ, Chintapalli M, Lundeen RA, Wammer KH, Arnold WA, McNeill K (2007) Environmental photochemistry of tylosin: efficient, reversible photoisomerization to a less-active isomer, followed by photolysis. J Agric Food Chem 55:7062–7068

    Article  CAS  Google Scholar 

  • Wetzstein HG, Schmeer N, Karl W (1997) Degradation of the fluoroquinolone enrofloxacin by the brown rot fungus Gloeophyllum striatum: identification of metabolites. Appl Environ Microbiol 63:4272–4281

    CAS  Google Scholar 

  • Wetzstein H-G, Stadler M, Tichy H-V, Dalhoff A, Karl W (1999) Degradation of ciprofloxacin by basidiomycetes and identification of metabolites generated by the brown rot fungus. Appl Environ Microbiol 65:1556–1563

    CAS  Google Scholar 

  • Wiethan J, Al-Ahmad A, Henninger A, Kümmerer K (2000) Simulation des Selektionsdrucks der Antibiotika Ciprofloxacin und Ceftazidim in Oberflächengewässern mittels klassischer Methoden. Vom Wasser 95:107–118

    CAS  Google Scholar 

  • de Wirth K, Schröder H, Meyer E, Nink K, Hofman S, Steib-Bauert M, Kämmerer R, Rueβ S, Daschner FD, Kern WV (2004) Antibiotic use in Germany and Europe. Deutsch Med Wochenschr 129:1987–1992

    Article  Google Scholar 

  • Wise R (2002) Antimicrobial resistance: priorities for action. J Antimicrob Chemoth 49: 585–86

    Article  CAS  Google Scholar 

  • Xu WH, Zhang G, Zou SC, Li XD, Liu YC (2007) Determination of selected antibiotics in the Victoria Harbour and the Pearl River, South China using high-performance liquid chromatographyelectrospray ionization tandem mass spectrometry. Environ Pollut 145:672–679

    Article  CAS  Google Scholar 

  • Ye Z, Weinberg HS, Meyer MT (2007) Trace analysis of trimethoprim and sulfonamide, macrolide, quinolone, and tetracycline antibiotics in chlorinated drinking water using liquid chromatography electrospray tandem mass spectrometry. Anal Chem 79:1135–1144

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Kümmerer, K. (2008). Antibiotics in the Environment. In: Kümmerer, K. (eds) Pharmaceuticals in the Environment. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-74664-5_6

Download citation

Publish with us

Policies and ethics