Advertisement

Removal of Pharmaceutical Residues from Contaminated Raw Water Sources by Membrane Filtration

  • T. Heberer
  • D. Feldmann

Keywords

Reverse Osmosis Municipal Sewage Fenofibric Acid Pharmaceutical Residue Drinking Water Purification 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adams C, Wang Y, Loftin K, Meyer M (2002) Removal of antibiotics from surface and distilled water in conventional water treatment processes. J Environ Eng ASCE 128: 253–260CrossRefGoogle Scholar
  2. Agbekodo KM, Legube B, Dard S (1996) Atrazine and simazine removal mechanisms by nanofiltration: influence of natural organic matter concentration. Wat Res 30:2535–2542CrossRefGoogle Scholar
  3. Andreozzi R, Marotta R, Pinto G, Pollio A (2002) Carbamazepine in water: persistence in the environment, ozonation treatment and preliminary assessment on algal toxicity Water Res 36: 2869–2877CrossRefGoogle Scholar
  4. Baier JH, Lykins, Jr BW, Fronk CA, Kramer SJ (1987) Using reverse osmosis to remove agricultural chemicals from groundwater. J AWWA 79:55–60Google Scholar
  5. Boxall ABA, Fogg LA, Blackwell PA, Kay P, Pemberton EJ, Croxford A (2004) Veterinary medicines in the environment. Rev Environ Contam Toxicol 180:1–91CrossRefGoogle Scholar
  6. Brauch HJ, Sacher F, Denecke E, Tacke T (2000) Wirksamkeit der Uferfiltration für die Entfernung von polaren organischen Spurenstoffen. (Efficiency of bank filtration for the removal of polar organic tracer compounds.) gwf Wasser Abwasser 14:226–234Google Scholar
  7. Clara M, Strenn B, Kreuzinger N (2004a) Carbamazepine as a possible anthropogenic marker in the aquatic environment: investigations on the behaviour of Carbamazepine in wastewater treatment and during groundwater infiltration. Water Res 38:947–954CrossRefGoogle Scholar
  8. Clara M, Strenn B, Ausserleitner M, Kreuzinger N (2004b) Comparison of the behaviour of selected micropollutants in a membrane bioreactor and a conventional wastewater treatment plant. Wat Sci Technol 50:29–36Google Scholar
  9. Clara M, Strenn B, Gans O, Martinez E, Kreuzinger N, Kroiss H (2005) Removal of selected pharmaceuticals, fragrances and endocrine disrupting compounds in a membrane bioreactor and conventional wastewater treatment plants. Water Res 39:4797–4807CrossRefGoogle Scholar
  10. Conroy O, Quanrud DM, Ela WP, Wicke D, Lansey KE, Arnold RG (2005) Fate of wastewater effluent hERagonists and hER-antagonists during soil aquifer treatment. Environ Sci Technol 39:2287–2293CrossRefGoogle Scholar
  11. Daughton CG, Ternes TA (1999) Pharmaceuticals and personal care products in the environment: agents of subtle change? Environ Health Perspect 107:907–938CrossRefGoogle Scholar
  12. Drewes J, Heberer T, Reddersen K (2002) Fate of pharmaceuticals during indirect potable reuse. Water Sci Technol 46:73–80Google Scholar
  13. ECD (1998) European Council Directive 98/83/EC of 3 November 1998 on the quality of water intended for human consumption, Official Journal L 330, 05/12/1998, pp 0032–0054Google Scholar
  14. Escher BI, Pronk W, Suter MJF, Maurer M (2006) Monitoring the removal efficiency of pharmaceuticals and hormones in different treatment processes of source-separated urine with bioassays. Environ Sci Technol 40:5095–5101CrossRefGoogle Scholar
  15. Halling-Sørensen B, Nielsen N, Lansky PF, Ingerslev F, Hansen L, Lützhøft HC, Jørgensen SE (1998) Occurrence, fate and effects of pharmaceutical substances in the environment – a review. Chemosphere 36:357–394CrossRefGoogle Scholar
  16. Heberer T (2002) Occurrence, fate, and removal of pharmaceutical residues in the aquatic environment: A review of recent research data. Toxicol Lett 131:5–17CrossRefGoogle Scholar
  17. Heberer T, Adam M (2004) Transport and attenuation of pharmaceutical residues during artificial groundwater replenishment. Environ Chem 1:22–25CrossRefGoogle Scholar
  18. Heberer T, Adam M (2005) Occurrence, fate, and removal of pharmaceutical residues in the aquatic environment: A review of recent research data. In: Dietrich DR, Petry T, Webb S (eds) Pharmaceuticals in the Environment, Academic Press (vol 52, pp 11–36)Google Scholar
  19. Heberer T, Dünnbier U, Reilich C, Stan HJ (1997) Detection of drugs and drug metabolites in ground water samples of a drinking water treatment plant. Fresen Environ Bull 6:438–443Google Scholar
  20. Heberer T, Schmidt-Böumler K, Stan HJ (1998) Occurrence and distribution of organic contaminants in the aquatic system in Berlin. part I: Drug residues and other polar contaminants in Berlin surface and groundwater. Acta Hydrochim Hydrobiol 26:272–278CrossRefGoogle Scholar
  21. Heberer T, Verstraeten IM, Meyer MT, Mechlinski A, Reddersen K (2001) Occurrence and fate of pharmaceuticals during bank filtration – preliminary results from investigations in Germany and the United States. Water Resour Update 120:4–17Google Scholar
  22. Heberer T, Reddersen K, Mechlinski A (2002a) From municipal sewage to drinking water: fate and removal of pharmaceutical residues in the aquatic environment in urban areas. Water Sci Technol 46:81–88Google Scholar
  23. Heberer T, Feldmann D, Reddersen K, Altmann H, Zimmermann T (2002b) Production of drinking water from highly contaminated surface waters: removal of organic, inorganic, and microbial contaminants applying mobile membrane filtration units. Acta Hydrochim Hydrobiol 30:24–33CrossRefGoogle Scholar
  24. Heberer T, Feldmann D, Adam M, Reddersen K (2004a) Final Report of project InSan I 1299-V-7502: Investigation of pharmaceutical residues in hospital effluents, in ground- and drinking water from Bundeswehr facilities, and their removal during drinking water purification. German Ministry of Defense, Berlin, 254 ppGoogle Scholar
  25. Heberer T, Mechlinski A, Fanck B, Knappe A, Massmann G, Pekdeger A, Fritz B (2004b) Field studies on the fate and transport of pharmaceutical residues in bank filtration. Ground Water Monit R 24:70–77CrossRefGoogle Scholar
  26. Hu JY, Yuan T, Ong SL, Song LF, Ng WJ (2003) Identification and quantification of bisphenol A by gas chromatography and mass spectrometry in a lab-scale dual membrane system. J Environ Monitor 5:141–144CrossRefGoogle Scholar
  27. Hua WY, Bennett ER, Letcher RJ (2006) Ozone treatment and the depletion of detectable pharmaceuticals and atrazine herbicide in drinking water sourced from the upper Detroit River, Ontario, Canada. Water Res 40:2259–2266CrossRefGoogle Scholar
  28. Huang CH, Sedlak DL (2001) Analysis of estrogenic hormones in municipal wastewater effluent and surface water using enzyme-linked immunosorbent assay and gas chromatography/tandem mass spectrometry. Environ Toxicol Chem 20:133–139CrossRefGoogle Scholar
  29. Huber MM, Canonica S, Park GY, von Gunten U (2003) Oxidation of pharmaceuticals during ozonation and advanced oxidation processes. Environ Sci Technol 37:1016–1024CrossRefGoogle Scholar
  30. Huber MM, Gobel A, Joss A, Hermann N, Loffler D, McArdell CS, Ried A, Siegrist H, Ternes TA, von Gunten U (2005) Oxidation of pharmaceuticals during ozonation of municipal wastewater effluents: a pilot study. Environ Sci Technol 39:4290–4299CrossRefGoogle Scholar
  31. Joss A, Keller E, Alder AC, Göbel A, McArdell C, Ternes TA, Siegrist H (2005) Removal of pharmaceuticals and fragrances in biological wastewater treatment. Water Res 39:3139–3152CrossRefGoogle Scholar
  32. Kimura K, Amy G, Drewes J, Heberer T, Kim T-U, Watanabe Y (2003a) Rejection of organic micropollutants (disinfection by-products, endocrine disrupting compounds, and pharmaceutically active compounds) by NF/RO membranes. J Mem Sci 227:113–121CrossRefGoogle Scholar
  33. Kimura K, Amy GL, Drewes JE, Watanabe Y (2003b) Adsorption of hydrophobic compounds onto NF/RO membranes: an artifact on overestimation of rejection. J Mem Sci 221: 89–101CrossRefGoogle Scholar
  34. Kimura K, Toshima S, Amy G, Watanabe Y (2004) Rejection of neutral endocrine disrupting compounds (EDCs) and pharmaceutical (sic.) active compounds (PhACs) by RO membranes. J Mem Sci 245:71–78CrossRefGoogle Scholar
  35. Kimura K, Hara H, Watanabe Y (2005) Removal of pharmaceutical compounds by submerged membrane bioreactors (MBRs). Desalination 178:135–140CrossRefGoogle Scholar
  36. Kiso Y, Nishimura Y, Kitao T, Nishimura K (2000) Rejection properties of non-phenylic pesticides with nanofiltration membranes. J Mem Sci 171:229–237CrossRefGoogle Scholar
  37. Kiso Y, Kon T, Kitao T, Nishimura K (2001a) Rejection properties of alkyl phthalates with nanofiltration membranes. J Mem Sci 182:205–214CrossRefGoogle Scholar
  38. Kiso Y, Sugiura Y, Kitao T, Nishimura, K. (2001b) Effect of hydrophobicity and molecular size on rejection of aromatic pesticides with nanofiltration membranes. J Mem Sci 192:1–10CrossRefGoogle Scholar
  39. Kiso Y, Mizuno A, Othman RAAB, Jung YJ, Kumano A, Ariji A (2002) Rejection properties of pesticides with a hollow fiber NF membrane (HNF-1). Desalination 143:147–157CrossRefGoogle Scholar
  40. Kühn W, Mueller U (2000) Riverbank filtration – an overview. J AWWA 12/2000:60–69Google Scholar
  41. Kümmerer K (2001) Drugs in the environment: emission of drugs, diagnostic aids and disinfectants into wastewater by hospitals in relation to other sources – a review. Chemosphere 45:957–969CrossRefGoogle Scholar
  42. Massmann G, Greskowiak J, Dunnbier U, Zuehlke S, Knappe A, Pekdeger A (2006) The impact of variable temperatures on the redox conditions and the behaviour of pharmaceutical residues during artificial recharge. J Hydrol 328:141–156CrossRefGoogle Scholar
  43. Mersmann P, Scheytt T, Heberer T (2002) Column experiments on the transport behavior of pharmaceutically active compounds in the saturated zone. Acta Hydrochim Hydrobiol 30:275–284CrossRefGoogle Scholar
  44. Nghiem LD, Schöfer AI (2002a) Adsorption and transport of trace contaminant estrone in NF/RO membranes. Environ Eng Sci 19:441–451CrossRefGoogle Scholar
  45. Nghiem LD, Schöfer AI, Waite TD (2002b) Adsorption of estrone on nanofiltration and reverse osmosis membranes in water and wastewater treatment. Wat Sci Technol 46:265–272Google Scholar
  46. Nghiem LD, Schöfer AI, Waite TD (2002c) Adsorptive interactions between membranes and trace contaminants. Desalination 147:269–274CrossRefGoogle Scholar
  47. Nghiem LD, Manis A, Soldenhoff K, Schöfer AI (2004a) Estrogenic hormone removal from wastewater using NF/RO membranes. J Mem Sci 242:37–45CrossRefGoogle Scholar
  48. Nghiem LD, Schafer AI, Elimelech M (2004b) Removal of natural hormones by nanofiltration membranes: measurement, modeling, and mechanisms. Environ Sci Technol 38:1888–1896CrossRefGoogle Scholar
  49. Nghiem LD, Schöfer AI, Elimelech M (2005a) Pharmaceutical retention mechanisms by nanofiltration membranes. Environ Sci Technol 39:7698–7705CrossRefGoogle Scholar
  50. Nghiem LD, Schöfer AI, Elimelech M (2005b) Nanofiltration of hormone mimicking trace organic contaminants. Separation Sci Technol 40:2633–2649CrossRefGoogle Scholar
  51. Nghiem LD, Schöfer AI (2006) Critical risk points of nanofiltration and reverse osmosis processes in water recycling applications. Desalination 187:303-312CrossRefGoogle Scholar
  52. Nghiem LD, Schöfer AI, Elimelech M (2006) Role of electrostatic interactions in the retention of pharmaceutically active contaminants by a loose nanofiltration membrane. J Membrane Sci 286:52–59CrossRefGoogle Scholar
  53. Ozaki H, Li H (2002) Rejection of organic compounds by ultra-low pressure reverse osmosis membrane. Water Res 36:123–130CrossRefGoogle Scholar
  54. Preuβ G, Willme U, Zullei-Seibert N (2001) Verhalten ausgewöhlter Arzneimittel bei der künstlichen Grundwasseranreicherung – Eliminierung und Effekte auf die mikrobielle Besiedlung. Acta Hydrochim Hydrobiol 29:269–277CrossRefGoogle Scholar
  55. Pronk W, Palmquist H, Biebow M, Boller M (2006) Nanofiltration for the separation of pharmaceuticals from nutrients in source-separated urine. Water Res 40:1405–1412CrossRefGoogle Scholar
  56. Reddersen K, Heberer T (2003) Multi-methods for the trace-level determination of pharmaceutical residues in sewage, surface and ground water samples applying GC-MS. J Sep Sci 26:1443–1450CrossRefGoogle Scholar
  57. Reddersen K, Heberer T, Duennbier U (2002) Occurrence and identification of phenazone drugs and their metabolites in ground- and drinking water. Chemosphere 49:539–544CrossRefGoogle Scholar
  58. Schöfer AI, Nghiem LD, Waite TD (2003) Removal of natural hormone estrone from aqueous solutions using nanofiltration and reverse osmosis. Environ Sci Technol 37:182–188CrossRefGoogle Scholar
  59. Schrader GA, Zwijnenburg A, Wessling M (2005) The effect of WWTP effluent zeta-potential on direct nanofiltration performance. J Mem Sci 266:80–93CrossRefGoogle Scholar
  60. Snyder S, Adham S, Redding A, Cannon F, DeCarolis J, Oppenheimer J, Wert E, Yoon Y (2007) Role of membranes and activated carbon in the removal of endocrine disruptors and pharmaceuticals. Desalination 202:156–181CrossRefGoogle Scholar
  61. STANAG (2002) STANAG 2136 MED (NATO STANDARDIZATION AGREEMENT): Minimum Standards of Water Potability During Field Operations and in Emergency Situations, 4th edn. (promulgated 10.04.2002)Google Scholar
  62. Ternes TA (1998) Occurrence of drugs in German sewage treatment plants and rivers. Water Res 32: 3245–3260CrossRefGoogle Scholar
  63. Ternes TA, Meisenheimer M, Mcdowell D, Sacher F, Brauch HJ, Haist-Gulde B, Preuss G, Wilme U, Zulei-Seibert N (2002) Removal of pharmaceuticals during drinking water treatment. Environ Sci Technol 36:3855–3863CrossRefGoogle Scholar
  64. Ternes TA, Stuber J, Herrmann N, McDowell D, Ried A, Kampmann M, Teiser B (2003) Ozonation: a tool for removal of pharmaceuticals, contrast media and musk fragrances from wastewater? Wat Res 37:1976–1982CrossRefGoogle Scholar
  65. TrinkwV (2001) German Drinking Water Regulation (“Verordnung über die Qualitöt von Wasser für den menschlichen Gebrauch (Trinkwasserverordnung – TrinkwV 2000, effective from January 1, 2003), Novellierung der Trinkwasserverordnung”) May 21, 2001, BundesgesetzblattGoogle Scholar
  66. Urase T, Sato K (2007) The effect of deterioration of nanofiltration membrane on retention of pharmaceuticals. Desalination 202:385–391CrossRefGoogle Scholar
  67. Van der Bruggen B, Schaep J, Maes W, Wilms D, Vandecasteele C (1998) Nanofiltration as a treatment method for the removal of pesticides from ground waters. Desalination 117:139–147CrossRefGoogle Scholar
  68. Van der Bruggen B, Schaep D, Wilms C, Vandecasteele C (1999) Influence of molecular size, polarity and charge on the retention of organic molecules by nanofiltration. J Mem Sci 156:29–41CrossRefGoogle Scholar
  69. Ventresque C, Turner G, Bablon G (1997) Nanofiltration: from prototype to full scale. J AWWA 89:65–76Google Scholar
  70. Verstraeten IM, Heberer T, Scheytt T (2002) Occurrence, characteristics, and transport and fate of pesticides, pharmaceutical active compounds, and industrial and personal care products at bank-filtration sites. , In: Ray C (ed) Bank filtration for water supply. Kluwer Academic Publishers, Dordrecht (Chapter 9, pp 175–227)Google Scholar
  71. Wintgens T, Gallenkemper M, Melin T (2002) Endocrine disrupter removal from wastewater using membrane bioreactor and nanofiltration technology. Desalination 146:387–391CrossRefGoogle Scholar
  72. Xu P, Drewes JE, Bellona C, Amy G, Kim TU, Adam M, Heberer T (2005) Rejection of emerging organic micropollutants in nanofiltration-reverse osmosis membrane applications. Water Environ Res 77:40–48CrossRefGoogle Scholar
  73. Yoon Y, Westerhoff P, Snyder SA, Wert EC (2006) Nanofiltration and ultrafiltration of endocrine disrupting compounds, pharmaceuticals and personal care products. J Mem Sci 270:88–100CrossRefGoogle Scholar
  74. Yoon Y, Westerhoff P, Snyder S, Wert E, Yoon J (2007) Removal of endocrine disrupting compounds and pharmaceuticals by nanofiltration and ultrafiltration membranes. Desalination 202:16–23CrossRefGoogle Scholar
  75. Zuehlke S, Duennbier U, Heberer T, Fritz B (2004) Analysis of endocrine disrupting steroids: Investigation of their release into the environment and their behavior during bank filtration. Ground Water Monit R 24:78–85CrossRefGoogle Scholar
  76. Zuehlke S, Duennbier U, Lesjean B, Gnirss R, Buisson H (2006) Long-term comparison of trace organics removal performances between conventional and membrane activated sludge processes. Water Environ Res 78:2480–2486CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • T. Heberer
    • 1
  • D. Feldmann
    • 2
  1. 1.Director of the Food Institute Oldenburg (LI-OL) Lower Saxony Federal State Office of Consumer Protection and Food Safety (LAVES)Germany
  2. 2.Bausch&Lomb/Dr. Mann Pharma Brunsb Damm 165-173Germany

Personalised recommendations