Odorants – Potent Substances at Minor Concentrations: The Ecological Role of Infochemicals

  • U. Klaschka


Rainbow Trout Olfactory Receptor Olfactory Epithelium Minor Concentration Potent Substance 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abjörnsson K, Wagner BMA, Axelsson, A, Bjerselius R, Olsen KH (1997) Responses of Acilius sulcatus (Coleoptera: Dytiscidae) to chemical cues from perch (Perca fluviatilis). Oecologica 111:166–171CrossRefGoogle Scholar
  2. Bolhuis JJ, Giraldeau L-A (2005) The behavior of animals. Mechanisms, function, and evolution. Blackwell Publishing, Malden Oxford CarltonGoogle Scholar
  3. Boriss H, Boersma M, Witshire KH (1999) Trimethylamine induces migration of waterfleas. Nature 398:382CrossRefGoogle Scholar
  4. Bradbury JW, Vehrencamp SL (1998) Principles of animal communication. Sinauer Associates, Sunderland USA Breithaupt T, Eger P (2002) Urine makes the difference: chemical communication in fighting crayfish made visible. J Exp Biol 205:1221–1231Google Scholar
  5. Brönmark C, Hansson LA (2000) Chemical communication in aquatic systems: an introduction. Oikos 88:103–109CrossRefGoogle Scholar
  6. Brown GE, Smith RJF (1998) Acquired predator recognition in juvenile rainbow trout (Oncorhynchus mykiss): conditioning hatchery-reared fish to recognize chemical cues of a predator. Can J Fish Aquat Sci 55:611–617CrossRefGoogle Scholar
  7. Brown GE, Adrian JC Jr, Smyth E, Leet H, Brennan S (2000) Ostariophysan alarm pheromones: Laboratory and field tests of the functional significance of nitrogen oxides. J Chem Ecol 26:139–154CrossRefGoogle Scholar
  8. Brown GE, Adrian JC Jr, Naderi NT, Harvey MC, Kelly JM (2003) Nitrogen oxides elicit antipredator responses in juvenile channel catfish, but not in convict cichlids or rainbow trout: Conservation of the Ostariophysan alarm pheromone. J Chem Ecol 29:1781–1796CrossRefGoogle Scholar
  9. Browne KA, Tamburri MN, Zimmer-Faust RK (1998) Modelling quantitative structure-activity relationships between animal behaviour and environmental signal molecules. J Exp Biol 201:245–258Google Scholar
  10. Burks RL, Lodge DM (2002) Cued in: Advances and opportunities in freshwater chemical ecology. J Chem Ecol 28:1901–1917CrossRefGoogle Scholar
  11. Carpenter S (1999) Besieged tadpoles send chemical alert. Science News 155:375CrossRefGoogle Scholar
  12. Carr WE (1988) The molecular nature of chemical stimuli in the aquatic environment. In: Atema J, Fay RR, Popper AN, Tavolga WN (eds) Sensory biology of aquatic animals. Springer-Verlag, Berlin, pp 3–27Google Scholar
  13. Diaz ER, Thiel M (2004) Chemical and visual communication during mate searching in rock shrimp. Biol Bull 206:134–143CrossRefGoogle Scholar
  14. Dicke M, Sabelis MW (1988) Infochemical terminology: based on cost-benefit analysis rather than origin of compounds? Funct Ecol 2:131–139CrossRefGoogle Scholar
  15. Dodson SI, Crowl TA, Peckarsky BL, Kats LB, Covich AP, Culp JM (1994) Non-visual communication in freshwater benthos: an overview. J N Am Benthol Soc 13:268–282CrossRefGoogle Scholar
  16. Dryer L (2000) Evolution of odorant receptors. BioEssays 22:803–810CrossRefGoogle Scholar
  17. Eisthen HL (1997) Evolution of vertebrate olfactory systems. Brain Behav Evol 50:222–233CrossRefGoogle Scholar
  18. Fine JM, Vrieze LA, Sørensen PW (2004) Evidence that petromyzontid lampreys employ a common migratory pheromone that is partially comprised of bile acids. J Chem Ecol 30:2091–2110CrossRefGoogle Scholar
  19. Gramling C (2005) Leading lampreys by the nose. Science now 10/3/2005:2–3Google Scholar
  20. Hara TJ (ed) (1992) Fish chemoreception. Chapman and Hall LondonGoogle Scholar
  21. Harborne JB (1993) Introduction to ecological biochemistry. London Academic Press, LondonGoogle Scholar
  22. Kiesecker JM, Chivers DP, Blaustein AR (1996) The use of chemical cues in predator recognition by western tadpoles. Anim Behav 52:1237–1245CrossRefGoogle Scholar
  23. Kiesecker JM, Chivers DP, Marco A, Quilchano C, Anderson MT, Blaustein AR (1999) Identification of a disturbance signal in larval red-legged frogs, Rana aurora. Anim Behav 57:1295–1300CrossRefGoogle Scholar
  24. Klaschka U (in press) The infochemical effect – a new chapter in ecotoxicology. Environ Sci Pollut ResGoogle Scholar
  25. Klaschka U, Kolossa-Gehring M (2007) Fragrances in the environment: pleasant odours for nature? Environ Sci Pollut Res 14(Special Issue 1):44–52CrossRefGoogle Scholar
  26. Koene JM, de Maat A (2002) The distinction between pheromones and allohomones. J Comp Physiol A 188:163–164CrossRefGoogle Scholar
  27. Larcher W (1995) Physiological plant ecology. ecophysiology and stress physiology of functional groups. Springer-Verlag, Berlin, Heidelberg, New YorkGoogle Scholar
  28. Larsson P, Dodson S (1993) Invited Review: Chemical communication in planktonic animals. Arch Hydrobiol 129:129–155Google Scholar
  29. Lass S, Spaak P (2003) Chemically induced anti-predator defences in plankton: a review. Hydrobiologia 491:221–239CrossRefGoogle Scholar
  30. Laurila A, Crochet P-A, Merilä J (2001) Predation induced effects on hatchling morphology in the common frog (Rana temporaria). Can J Zool 79:926–930CrossRefGoogle Scholar
  31. Lawrence BJ, Smith RJF (1989) Behavioral response of solitary fathead minnows, Pimephales promelas, to alarm substance. J Chem Ecol 15: 209–219CrossRefGoogle Scholar
  32. Li W, Sørensen PW (1997) Highly independent olfactory receptor sites for naturally occurring bile acids in the sea lamprey, Petromyzon marinus. J Comp Physiol A 180:429–438CrossRefGoogle Scholar
  33. Little EE, Archeski RD, Flerov BA, Kozlovskaya VI (1990) Behavioral indicators of sublethal toxicity in rainbow trout. Arch Environ Contamin Toxicol 19:380–389CrossRefGoogle Scholar
  34. Little EE, Fairchild JF, DeLonay AJ (1993) Behavioral methods for assessing impacts of contaminants on early life stage fishes. American Fisheries Society Symposium 14:67–76Google Scholar
  35. Matsumara K, Mori S, Nagano M, Fusetani N (1998) Lentil lectin inhibits adult extract-induced settlement of the barnacle, Balanus amphitrite. J Exp Zool 280:213–219CrossRefGoogle Scholar
  36. Matsumura K, Matsunaga S, Fusetani N (2004) Possible involvement of phosphatdylcholine in school recognition in the catfish, Plotosus lineatus. Zool Sci 21:257–264CrossRefGoogle Scholar
  37. Newman RM, Kerfoot WC, Hanscom III Z (1996) Watercress allelochemical defends high-nitrogen foliage against consumption: effects on freshwater invertebrate herbivores. Ecology 77:2312–2323CrossRefGoogle Scholar
  38. Oldham NJ, Boland W (1996) Chemical ecology: multifunctional compounds and multitrophic interactions. Naturwissenschaften 83:247–254Google Scholar
  39. Olender T, Feldmesser E, Atarot T, Eisenstein M, Lancet D (2004) The olfactory receptor universe – from whole genome analysis to structure and evolution. Genet Mol Res 3:545–553Google Scholar
  40. Payne TL, Birch MC, Kennedy CEJ (1986) Mechanisms in insect olfaction, Clarendon Press OxfordGoogle Scholar
  41. Pichersky E (2004) Plant scents. What we perceive as a fragrant perfume is actually a sophisticated tool used to entice pollinators, discourage microbes and fend off predators. Am Scien 92:514–521Google Scholar
  42. Pohnert G, Steinke M, Tollrian R (2007) Chemical cues, defence metabolites and the shaping of pelagic interspecific interactions. Trends Ecol Evol 22:198–204CrossRefGoogle Scholar
  43. Polya G (2003) Biochemical targets of plant bioactive compounds. A pharmacological reference guide to sites of action and biological effects. Taylor and Francis, London, New YorkGoogle Scholar
  44. Rolen SH, Sørensen PW, Mattson D, Caprio J (2003) Polyamines as olfactory stimuli in the goldfish Carassius auratus. J Exp Biol 206:1683–1696CrossRefGoogle Scholar
  45. Schiestl FP, Ayasse M (2000) Post-mating odor in females of the solitary bee, Andrena nigroaenea (Apoidea, Andrenidae), inhibits male mating behavior. Behav Ecol Sociobiol 48:303–307CrossRefGoogle Scholar
  46. Schiestl FP, Ayasse M (2001) Post-pollination emission of a repellent compound in a sexually deceptive orchid: a new mechanism for maximising reproductive success? Oecologia 126:531–534CrossRefGoogle Scholar
  47. Shiojiri K, Ozawa R, Takabayashi J (2006) Plant volatiles, rather than light, determine the nocturnal behavior of a caterpillar. PloS Biology 4(6):e164CrossRefGoogle Scholar
  48. Tollrian R, Harvell CD (1999) The ecology and evolution of inducible defences. Princeton University Press, Princeton NJGoogle Scholar
  49. Tomba AM, Keller TA, Moore PA (2001) Foraging in complex odor landscapes: chemical orientation strategies during stimulation by conflicting chemical cues. J N Am Benthol Soc 20:211–222CrossRefGoogle Scholar
  50. Toshiaki JH (1992) Fish chemoreception. Chapman and Hall Fish and Fisheries Series 6, LondonGoogle Scholar
  51. Vardi A, Formiggini F, Casotti R, de Martino A, Ribalet F (2006) A stress surveillance system based on calcium and nitric oxide in marine diatoms. PloS Biology 4(3)e 60:0411–0419Google Scholar
  52. Waring CP, Moore A (1997) Sublethal effects of a carbamate pesticide on pheromonal mediated endocrine function in mature Atlantic salmon (Salmo salarL.) parr. Fish Physiol Biochem 17:203–211CrossRefGoogle Scholar
  53. Wisenden BD, Millard MC (2001) Aquatic flatworms use chemical cues from injured conspecifics to assess predation risk and to associate risk with novel cues. Animal Behav 62:761–766CrossRefGoogle Scholar
  54. Wyatt TD (2003) Pheromones and animal behaviour. Cambridge University PressGoogle Scholar
  55. Yamamoto K, Kawai Y, Hayashi T, Ohe Y, Hayashi H, Toyoda F, Kawahara G, Iwata T, Kikuyama S (2000) Silefrin, a sodefrin-like pheromone in the abdominal gland of the sword-tailed newt, Cynops ensicauda. FEBS Lett 472:267–270CrossRefGoogle Scholar
  56. Young JM, Trask BJ (2002): The sense of smell: genomics of vertebrate odorant receptors. Hum Mol Genet 11:1153–11607CrossRefGoogle Scholar
  57. Zimmer RK, Butman CA (2000) Chemical signaling processes in the marine environment. Biol Bull 198:168–187CrossRefGoogle Scholar
  58. Zimmer-Faust RK, O’Neill PB, Schar DW (1996) The relationship between predator activity state and sensitivity to prey odor. Biol Bull 190:82–87CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • U. Klaschka
    • 1
  1. 1.University of Applied Sciences Ulm89075 UlmGermany

Personalised recommendations