The Ecotoxicological Effects of Pharmaceuticals (Antibiotics and Antiparasiticides) in the Terrestrial Environment – a Review

  • H. Schmitt
  • J. Römbke


Environmental Risk Assessment Dung Beetle Veterinary Drug Environ Toxicol Ecotoxicological Effect 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. AgersØ Y, Sandvang D (2005) Class 1 Integrons and tetracycline resistance genes in Alcaligenes,Arthrobacter, and Pseudomonas spp. isolated from pigsties and manured soil. Appl Environ Microbiol 71:7941–7947CrossRefGoogle Scholar
  2. AgersØ Y, SengelØv G, Jensen LB (2004) Development of a rapid method for direct detection of tet(M) genes in soil from Danish farmland. Environ Int 30:117–122CrossRefGoogle Scholar
  3. AgersØ Y, Wulff G, Vaclavik E, Halling-SØrensen B, Jensen LB (2006) Effect of tetracycline residues in pig manure slurry on tetracycline-resistant bacteria and resistance gene tet(M) in soil microcosms. Environ Int 32:876–882CrossRefGoogle Scholar
  4. Baguer AJ, Jensen J, Krogh PH (2000) Effects of the antibiotics oxytetracycline and tylosin on soil fauna Chemosphere 40:751–757Google Scholar
  5. Batchelder AR (1982) Chlortetracycline and oxytetracycline effects on plant growth and development in soil systems. J Environ Qual 11:675–678Google Scholar
  6. Blanck H (2002) A critical review of procedures and approaches used for assessing pollution-induced community tolerance (PICT) in biotic communities. Hum and Ecol Risk Assess 8:1003–1034CrossRefGoogle Scholar
  7. Blume RR, Younger RL, Aga A, Myers CJ (1976) Effects of residues of certain anthelmintics in bovine manure on Onthophagus gazella, a non-target organism. Southwest Entomol 2:100–103Google Scholar
  8. Boleas S, Alonso C, Pro J, Babin MM, Fernandez C, Carbonell G, Tarazona JV (2005a) Effects of sulfachlorpyridazine in MS.3-arable land: a multispecies soil system for assessing the environmental fate and effects of veterinary medicines. Environ Toxicol Chem 24:811–819CrossRefGoogle Scholar
  9. Boleas S, Alonso C, Pro J, Fernandez C, Carbonell G, Tarazona JV (2005b) Toxicity of the antimicrobial oxytetracycline to soil organisms in a multi-species-soil system (MS.3) and influence of manure coaddition. J Hazard Mater 112:238–241Google Scholar
  10. Boxall ABA, Blackwell P, Cavallo R, Kay P, Tolls J (2002) The sorption and transport of a sulphonamide antibiotic in soil systems. Toxicol Lett 131:19–28CrossRefGoogle Scholar
  11. Boxall AB, Fogg LA, Blackwell PA, Kay P, Pemberton EJ, Croxford A (2004) Veterinary medicines in the environment. Rev Environ Contam T 180:1–91CrossRefGoogle Scholar
  12. Boxall AB, Fogg LA, Baird DJ, Lewis C, Telfer TC, Kolpin D, Gravell A, Pemberton E, Boucard T (2005) Targeted monitoring study for veterinary medicines in the environment. Environment Agency, Bristol, UK, 119 ppGoogle Scholar
  13. Campos J, Garrido J, Mendez R, Lema J (2001) Effect of two broad-spectrum antibiotics on activity and stability of continuous nitrifying system. Appl Biochem Biotech 95:1–10CrossRefGoogle Scholar
  14. Chapman A, Gray J, Taylor K, Barrett KL (2003) Development of a toxicity test method using the dung beetle Onthophagus taurus. Poster at the ENVIRPHARMA conference, Lyon, France. Abstract Book, p 60Google Scholar
  15. CHMP (Committee for Human Medicinal Products) (2005) Guideline on the environmental risk assessment of medicinal products for human use. EMEA/CHMP/4477/00, 21 ppGoogle Scholar
  16. Colinas C, Ingham E, Molina R (1994) Population responses of target and non-target forest soil organisms to selected biocides. Soil Biol Biochem 26:41–47CrossRefGoogle Scholar
  17. D’Costa VM, McGrann KM, Hughes DW, Wright GD (2006) Sampling the antibiotic resistome. Science 311:374–377CrossRefGoogle Scholar
  18. Degens BP (1998) Decreases in microbial functional diversity do not result in corresponding changes in decomposition under different moisture conditions. Soil Biology Biochemistry 14:1989–2000CrossRefGoogle Scholar
  19. Edwards CA, Atiyeh RM, Römbke J (2001) Environmental impact of avermectins. Rev Environ Contam T 171:111–137Google Scholar
  20. Fedesa (1998) Verbrauch von Antibiotika (Volume sales of antibiotics). Deut Tierarztbl 11:1093Google Scholar
  21. Fernández C, Alonso C, Babin MM, Pro J, Carbonell G, Tarazona JV (2004) Ecotoxicological assessment of doxycycline in aged pig manure using multispecies soil systems. Sci Total Environ 323:63–69CrossRefGoogle Scholar
  22. Floate KD (1998) Off-target effects of ivermectin on insects and on dung degradation in southern Alberta, Canada. Bull Entomol Res 88:25–35Google Scholar
  23. Floate KD, Wardhaugh KG, Boxall AB, Sherratt TN (2005) Fecal residues of veterinary parasiticides: nontarget effects in the pasture environment. Annu Rev Entomol 50:153–179CrossRefGoogle Scholar
  24. Garbeva P, van Veen JA, van Elsas JD (2004) Microbial diversity in soil: selection microbial populations by plant and soil type and implications for disease suppressiveness. Annu Rev Phytopathol 42: 243–270CrossRefGoogle Scholar
  25. Griffiths BS, Ritz K, Bardgett RD, Cook R, Christensen S, Ekelund F, SØrensen SJ, Bååth E, Bloem J, de Ruiter PC, Dolfing J, Nicolardot B (2000) Ecosystem response of pasture soil communities to fumigation- induced microbial diversity reductions: an examination of the biodiversity-ecosystem function relationship. Oikos 90:279–294CrossRefGoogle Scholar
  26. GrØnvold J, Svendsen TS, Kraglund H-O, Bresciani J, Monrad J (2004) Effect of the antiparasitic drugs fenbendazole and ivermectin on the soil nematode Pristionchus maupasi. Vet Parasitol 124:91–99CrossRefGoogle Scholar
  27. Halley BA, Winter R, Yoon S, Marley SE, Rehbein S (2005) The environmental safety of eprinomectin to earthworms. Vet Parasitol 128:109–114CrossRefGoogle Scholar
  28. Halling-SØrensen B, Nors Nielsen S, Lanzky PF, Ingerslev F, Holten LützhØft HC, JØrgensen SE (1998) Occurrence, fate and effects of pharmaceutical substances in the Environment – a review. Chemosphere 36:357–393CrossRefGoogle Scholar
  29. Halling-SØrensen B, SengelØv G, TjØrnelund J (2002) Toxicity of tetracyclines and tetracycline degradation products to environmentally relevant bacteria, including selected tetracycline-resistant bacteria. Arch Environ Con Tox 42:263–271CrossRefGoogle Scholar
  30. Halling-SØrensen B, Lykkeberg A, Ingerslev F, Blackwell P, Tjornelund J (2003) Characterisation of the abiotic degradation pathways of oxytetracyclines in soil interstitial water using LC-MS-MS. Chemosphere 50:1331–1342CrossRefGoogle Scholar
  31. Hamscher G, Sczesny S, Abu-Qare A, Höper H, Nau H (2000) Stoffe mit pharmakologischer Wirkung einschliesslich hormonell aktiver Substanzen in der Umwelt: Nachweis von Tetracyclinen in güllegedüngten Böden. Deutsche Tierarztl Woch 107:332–334Google Scholar
  32. Hamscher G, Sczesny S, Höper H, Nau H (2002) Determination of persistent tetracycline residues in soil fertilized with liquid manure by high-performance liquid chromatography with electrospray ionization tandem mass spectrometry. Anal Chem 74:1509–1518CrossRefGoogle Scholar
  33. Hamscher G, Pawelzick HT, Höper H, Nau H (2005) Different behaviour of tetracyclines and sulfonamides in sandy soils after repeated fertilization with liquid manure. Environ Toxicol Chem 24:861–868CrossRefGoogle Scholar
  34. Hempel H, Scheffczyk A, Schallnaβ H-J, Lumaret J-P, Alvinerie M, Rβmbke J (2006) Effects of four veterinary pharmaceuticals on the dung beetle Aphodius constans in the laboratory. Environ Toxicol Chem 25:3155–3163CrossRefGoogle Scholar
  35. Heuer H, Smalla K (2007) Manure and sulfadiazine synergistically increased bacterial antibiotic resistance in soil over at least two months. Environ Microbiol 9:657–666CrossRefGoogle Scholar
  36. Hund-Rinke K, Simon M, Lukow T (2004) Effects of tetracycline on the soil microflora: Function, diversity, resistance. J Soil Sed 4:11–16Google Scholar
  37. Ingham ER (1985) Review of the effects of 12 selected biocides on target and non-target soil organisms. Crop Protection 4:3–32CrossRefGoogle Scholar
  38. ISO (1999): Soil quality – Inhibition of reproduction of Collembola (Folsomia candida) by soil pollutants. International Organization for Standardization, Geneva, Switzerland (ISO 11267)Google Scholar
  39. Jensen J, Krogh PH, Sverdrup LE (2003) Effects of the antibacterial agents tiamulin, olanquindox and metronidazole and the anthelmintic ivermectin on the soil invertebrate species Folsomia fimetaria (Collembola) and Enchytraeus crypticus (Enchytraeidae). Chemosphere 50:437–443CrossRefGoogle Scholar
  40. Jensen LB, Baloda S, Boye M, Aarestrup FM (2001) Antimicrobial resistance among Pseudomonas spp. and the Bacillus cereus group isolated from Danish agricultural soil. Environ Int 26:581–587CrossRefGoogle Scholar
  41. Knecht JA de, Montforts MHMM (2001) Environmental risk assessment of veterinary medicine products: an evaluation of the registration procedure. SETAC Globe 2:29–30Google Scholar
  42. Kolar L, Kozuh Erzen N (2006) Veterinary pasiticides – are they posing an environmental risk? Slovenian Vet Res 43:85–96Google Scholar
  43. Kozuh Erzen N, Kolar L, Cerkvenik Flajs V, Kuzner J, Marc I, Pogacnik M (2005) Degradation of abamectin and doramectin on sheep grazed pasture. Ecotoxicology 14:627–635CrossRefGoogle Scholar
  44. Kreuzig R, Heis J, Höltge S (2006) Das Gülle-Projekt – Ausarbeitung eines Methodenkatalogs zur Untersuchung des Rückstandsverhaltens von Tierarzneimitteln in Gülle und güllegedüngten Böden. Mitt Umweltchem ökotox 12:39–42Google Scholar
  45. Kryger U, Deschodt C, Scholtz CH (2005) Effects of fluazuron and ivermectin treatment of cattle on the structure of dung beetle communities. Agr Ecosyst Environment 105:649–656CrossRefGoogle Scholar
  46. Larque-Saavedra A, Lang F (1988) Increase in the number of pods and flowers in bean plants by Aspirin. Proc Plant Growth Regul Soc Am 15:186–188Google Scholar
  47. Lebek G (1979) Nutritive antibiotic additives in animal feeding stuffs- a further form of environmental pollution. Zbl Bakt Mik Hyg B 168:562–567Google Scholar
  48. Lee CM, Wall R (2006a) Cow-dung colonization and decomposition following insect exclusion. Bull Entomol Res 96:315–322CrossRefGoogle Scholar
  49. Lee CM, Wall R (2006b) Distribution and abundance of insects colonizing cattle dung in South West England. J Nat Hist 40:1167–1177CrossRefGoogle Scholar
  50. Lin Q, Brookes PC (1999) An evaluation of the substrate-induced respiration method. Soil Biol Biochem 31:1969–1983CrossRefGoogle Scholar
  51. Lumaret J-P, Errouissi F (2002) Use of anthelminthics in herbivores and evaluation of risks for the non target fauna of pastures. Vet Res 33:547–562CrossRefGoogle Scholar
  52. Lumaret J-P, Alvinerie M, Hempel H, Schallnaβ H-J, Claret D, Römbke J (2006) New screening test to predict the potential impact of ivermectin-contaminated cattle dung on dung beetles. Vet Res 38:15–24CrossRefGoogle Scholar
  53. Maund S, Chapman P, Kedwards T, Tattersfield L, Matthiessen P, Warwick R, Smith E (1999) Application of multivariate statistics to ecotoxicological field studies. Environ Toxicol Chem 18:111–112CrossRefGoogle Scholar
  54. Migliore L (1995) Effect on plants of sulphadimethoxine used in intensive farming (Panicum miliaceum, Pisum sativum and Zea mays). Agr Ecosyst Environ 52:103–110CrossRefGoogle Scholar
  55. Migliore L, Brambilla G, Casoria P, Civitareale C, Cozzolino S, Gaudio L (1996a) Effect of sulphadimethoxine contamination on barley (Hordeum distichum L., Poaceae, Liliposida). Agr Ecosyst Environ 60:121–128CrossRefGoogle Scholar
  56. Migliore L, Brambilla G, Casoria P, Civitareale C, Cozzolino S, Gaudio L (1996b) Effects of antimicrobials for agriculture as environmental pollutants. Fresen Environ Bull 5:735–739Google Scholar
  57. Migliore L, Civitareale C, Cozzolino S, Casoria P, Brambilla G, Gaudio L (1998) Laboratory models to evaluate phytotoxicity of sulphadimethoxine on terrestrial plants. Chemosphere 37:2957–2961CrossRefGoogle Scholar
  58. Migliore L, Cozzolino S, Fiori M (2000) Phytotoxicity to and uptake of flumequine used in intensive aquaculture on the aquatic weed, Lythrum salicaria L. Chemosphere 40:741–750CrossRefGoogle Scholar
  59. Montforts MHMM (2005) The trigger values in the environmental risk assessment for (veterinary) medicines in the European Union: a critical appraisal. RIVM Report 601500002, 45 ppGoogle Scholar
  60. Noël HL, Hopkin SP, Hutchinson TH, Williams TD, Sibly RM (2006) Population growth rate and carrying capacity for springtails Folsomia candida exposed to ivermectin. Ecol Appl 16:656–665CrossRefGoogle Scholar
  61. OECD (1984) OECD-guideline for testing of chemicals No. 207. Earthworm acute toxicity test. Paris (Organisation for Economic Co-Operation and Development)Google Scholar
  62. OECD (2000a) OECD-Guideline for the testing of chemicals No 217. Soil microorganisms: Carbon transformation test. Paris (Organisation for Economic Co-Operation and Development)Google Scholar
  63. OECD (2000b) OECD-guideline for testing of chemicals No. 216. Soil microorganisms, nitrogen transformation test. Paris (Organisation for Economic Co-Operation and Development)Google Scholar
  64. OECD (2002) OECD-guideline for testing of chemicals No. 307. Aerobic and anaerobic transformation in soil. Paris (Organisation for Economic Co-Operation and Development)Google Scholar
  65. OECD (2004a) OECD-guideline for testing of chemicals No. 208. Terrestrial plant test: Seedling emergence and seedling growth test. Paris (Organisation for Economic Co-Operation and Development)Google Scholar
  66. OECD (2004b) OECD-guideline for testing of chemicals No. 220. Enchytraeidae reproduction test. Paris (Organisation for Economic Co-Operation and Development)Google Scholar
  67. OECD (2004c) OECD-guideline for testing of chemicals No. 222. Earthworm reproduction test. Paris (Organisation for Economic Co-Operation and Development)Google Scholar
  68. OECD (2006) Determination of Developmental Toxicity of a Test Chemical to Dipteran Dung Flies (Scatophaga stercoraria L. (Scatophagidae), Musca autumnalis De Geer (Muscidae)). Paris (Organisation for Economic Co-Operation and Development)Google Scholar
  69. Onan LJ, LaPara TM (2003) Tylosin-resistant bacteria cultivated from agricultural soil. FEMS Microbiol Lett 220:15–20CrossRefGoogle Scholar
  70. Patten DK, Wolf DC, Kunkle WE, Douglass LW (1980) Effect of antibiotics in beef cattle feces on nitrogen and carbon mineralization in soil and on plant growth and composition. J Environ Qual 9: 167–172CrossRefGoogle Scholar
  71. Pfeiffer C, Emmerling C, Schroeder D, Niemeyer J (1998) Antibiotika (Ivermectin, Monensin) und endokrine Umweltchemikalien (Nonylphenol, Ethinylöstradiol) im Boden. Umweltwissenschaften und Schadstoff-Forschung 10:147–153CrossRefGoogle Scholar
  72. Roberts BL, Dorough HW (1984) Relative toxicities of chemicals to the earthworm Eisenia foetida. Environ Toxicol Chem 3:67–78CrossRefGoogle Scholar
  73. Schmitt H, van Beelen P, Tolls J, van Leeuwen CL (2004) Pollution-induced community tolerance of soil microbial communities caused by the antibiotic sulfachloropyridazine. Environ Sci Technol 38: 1148–1153CrossRefGoogle Scholar
  74. Schmitt H, Martinali B, van Beelen P, Seinen W (2006a) On the limits of toxicant-induced tolerance testing: co-tolerance and response variation of antibiotic effects. Environ Toxicol Chem 25:1961–1968CrossRefGoogle Scholar
  75. Schmitt H, Stoob K, Hamscher G, Smit E, Seinen W (2006b) Tetracyclines and tetracycline resistance in agricultural soils – microcosm and field studies. Microbial Ecol 51:267–276CrossRefGoogle Scholar
  76. SengelØv G, AgersØ Y, Halling-SØrensen B, Baloda SB, Andersen J, Jensen LB (2003) Bacterial antibiotic resistance levels in Danish farmland as a result of treatment with pig manure slurry. Environ Int 28:587–595CrossRefGoogle Scholar
  77. Sun Y, Diao X, Zhang Q, Shen J (2005) Bioaccumulation and elimination of avermectin B1a in the earthworm (Eisenia fetida). Chemosphere 60:699–704CrossRefGoogle Scholar
  78. Svendsen TS, Baker GH (2002) Survival and growth of Aporrectodea longa (Lumbricidae) fed on sheep and cow dung with and without Moxidectin residues. Aust J Agr Res 53:447–451CrossRefGoogle Scholar
  79. Svendsen TS, Sommer C, Holter P, GrØnvold J (2002) Survival and growth of Lumbricus terrestris (Lumbricidae) fed on dung cattle given sustained-release boluses of ivermectin or fenbendazole. Eur J Soil Biol 38:389–392CrossRefGoogle Scholar
  80. Svendsen TS, GrØnvold J, Holter P, Sommer C (2003) Field effects of ivermectin and fenbendazole on earthworm populations and the disappearance of dung pats from bolus-treated cattle. Appl Soil Ecol 24:207–218CrossRefGoogle Scholar
  81. Svendsen TS, Hansen PE, Sommer C, Martinussen T, GrØnvold J, Holter P (2005) Life history characteristics of Lumbricus terrestris and effects of the veterinary antiparasitics compounds Ivermectin and fenbendazole. Soil Biol Biochem 37:927–936CrossRefGoogle Scholar
  82. Thiele-Bruhn S (2005) Microbial inhibition by pharmaceutical antibiotics in different soils – dose-response relations determined with the iron(III) reduction test. Environ Toxicol Chem 24:869–876CrossRefGoogle Scholar
  83. Thiele-Bruhn S, Beck IC (2005) Effects of sulfonamide and tetracycline antibiotics on soil microbial activity and microbial biomass. Chemosphere 59:457–465CrossRefGoogle Scholar
  84. Tu CM (1978) A screening technique for assessing effects of pesticides on population and activities of non-target soil microorganisms. Bull Environ Contam T 20:212–218CrossRefGoogle Scholar
  85. Ungemach FR (2000) Figures on quantities of antibacterials used for different purposes in the EU-countries and interpretation. Acta Vet Scand 93:89–98Google Scholar
  86. Vaclavik E, Halling-SØrensen B, Ingerslev F (2004) Evaluation of manometric respiration tests to assess the effects of veterinary antibiotics in soil. Chemosphere 56:667–676CrossRefGoogle Scholar
  87. VICH (International Cooperation on Harmonisation of Technical Requirements for Registration of Veterinary Medicinal Products) (2005) Environmental impact assessment for veterinary medicinal products – Phase II. Guidance. VICH GL 38, 38 ppGoogle Scholar
  88. Walker GE (1988) Phytophthora root-rot of container-grown citrus as affected by foliar sprays and soil drenches of phosphorus and acetyl salicyclic acids. Plant Soil 107:107–112CrossRefGoogle Scholar
  89. Wardhaugh KG (2005) Insecticidal activity of synthetic pyrethroids, organophosphates, insect growth regulators and other livestock parasiticides: an Australian perspective. Environ Toxicol Chem 24:789–796CrossRefGoogle Scholar
  90. Yoshimura H, Endoh YS, Harada K (2005) Gryllus bimaculatus: A possible bioindicator organism for detection of chemical pollutants in terrestrial systems. Ecol Indicator 5:181–188CrossRefGoogle Scholar
  91. Zielezny Y, Groeneweg J, Vereecken H, Tappe W (2006) Impact of sulfadiazine and chlorotetracycline on soil bacterial community structure and respiratory activity. Soil Biol Biochem 38:2372–2380CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • H. Schmitt
    • 1
  • J. Römbke
    • 2
  1. 1.IRAS, Utrecht UniversityThe Netherlands
  2. 2.ECT Oekotoxikologie GmbHGermany

Personalised recommendations