Skip to main content

The Ecotoxicological Effects of Pharmaceuticals (Antibiotics and Antiparasiticides) in the Terrestrial Environment – a Review

  • Chapter

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • AgersØ Y, Sandvang D (2005) Class 1 Integrons and tetracycline resistance genes in Alcaligenes,Arthrobacter, and Pseudomonas spp. isolated from pigsties and manured soil. Appl Environ Microbiol 71:7941–7947

    Article  CAS  Google Scholar 

  • AgersØ Y, SengelØv G, Jensen LB (2004) Development of a rapid method for direct detection of tet(M) genes in soil from Danish farmland. Environ Int 30:117–122

    Article  CAS  Google Scholar 

  • AgersØ Y, Wulff G, Vaclavik E, Halling-SØrensen B, Jensen LB (2006) Effect of tetracycline residues in pig manure slurry on tetracycline-resistant bacteria and resistance gene tet(M) in soil microcosms. Environ Int 32:876–882

    Article  CAS  Google Scholar 

  • Baguer AJ, Jensen J, Krogh PH (2000) Effects of the antibiotics oxytetracycline and tylosin on soil fauna Chemosphere 40:751–757

    Google Scholar 

  • Batchelder AR (1982) Chlortetracycline and oxytetracycline effects on plant growth and development in soil systems. J Environ Qual 11:675–678

    CAS  Google Scholar 

  • Blanck H (2002) A critical review of procedures and approaches used for assessing pollution-induced community tolerance (PICT) in biotic communities. Hum and Ecol Risk Assess 8:1003–1034

    Article  Google Scholar 

  • Blume RR, Younger RL, Aga A, Myers CJ (1976) Effects of residues of certain anthelmintics in bovine manure on Onthophagus gazella, a non-target organism. Southwest Entomol 2:100–103

    Google Scholar 

  • Boleas S, Alonso C, Pro J, Babin MM, Fernandez C, Carbonell G, Tarazona JV (2005a) Effects of sulfachlorpyridazine in MS.3-arable land: a multispecies soil system for assessing the environmental fate and effects of veterinary medicines. Environ Toxicol Chem 24:811–819

    Article  CAS  Google Scholar 

  • Boleas S, Alonso C, Pro J, Fernandez C, Carbonell G, Tarazona JV (2005b) Toxicity of the antimicrobial oxytetracycline to soil organisms in a multi-species-soil system (MS.3) and influence of manure coaddition. J Hazard Mater 112:238–241

    Google Scholar 

  • Boxall ABA, Blackwell P, Cavallo R, Kay P, Tolls J (2002) The sorption and transport of a sulphonamide antibiotic in soil systems. Toxicol Lett 131:19–28

    Article  CAS  Google Scholar 

  • Boxall AB, Fogg LA, Blackwell PA, Kay P, Pemberton EJ, Croxford A (2004) Veterinary medicines in the environment. Rev Environ Contam T 180:1–91

    Article  CAS  Google Scholar 

  • Boxall AB, Fogg LA, Baird DJ, Lewis C, Telfer TC, Kolpin D, Gravell A, Pemberton E, Boucard T (2005) Targeted monitoring study for veterinary medicines in the environment. Environment Agency, Bristol, UK, 119 pp

    Google Scholar 

  • Campos J, Garrido J, Mendez R, Lema J (2001) Effect of two broad-spectrum antibiotics on activity and stability of continuous nitrifying system. Appl Biochem Biotech 95:1–10

    Article  CAS  Google Scholar 

  • Chapman A, Gray J, Taylor K, Barrett KL (2003) Development of a toxicity test method using the dung beetle Onthophagus taurus. Poster at the ENVIRPHARMA conference, Lyon, France. Abstract Book, p 60

    Google Scholar 

  • CHMP (Committee for Human Medicinal Products) (2005) Guideline on the environmental risk assessment of medicinal products for human use. EMEA/CHMP/4477/00, 21 pp

    Google Scholar 

  • Colinas C, Ingham E, Molina R (1994) Population responses of target and non-target forest soil organisms to selected biocides. Soil Biol Biochem 26:41–47

    Article  CAS  Google Scholar 

  • D’Costa VM, McGrann KM, Hughes DW, Wright GD (2006) Sampling the antibiotic resistome. Science 311:374–377

    Article  CAS  Google Scholar 

  • Degens BP (1998) Decreases in microbial functional diversity do not result in corresponding changes in decomposition under different moisture conditions. Soil Biology Biochemistry 14:1989–2000

    Article  Google Scholar 

  • Edwards CA, Atiyeh RM, Römbke J (2001) Environmental impact of avermectins. Rev Environ Contam T 171:111–137

    CAS  Google Scholar 

  • Fedesa (1998) Verbrauch von Antibiotika (Volume sales of antibiotics). Deut Tierarztbl 11:1093

    Google Scholar 

  • Fernández C, Alonso C, Babin MM, Pro J, Carbonell G, Tarazona JV (2004) Ecotoxicological assessment of doxycycline in aged pig manure using multispecies soil systems. Sci Total Environ 323:63–69

    Article  CAS  Google Scholar 

  • Floate KD (1998) Off-target effects of ivermectin on insects and on dung degradation in southern Alberta, Canada. Bull Entomol Res 88:25–35

    CAS  Google Scholar 

  • Floate KD, Wardhaugh KG, Boxall AB, Sherratt TN (2005) Fecal residues of veterinary parasiticides: nontarget effects in the pasture environment. Annu Rev Entomol 50:153–179

    Article  CAS  Google Scholar 

  • Garbeva P, van Veen JA, van Elsas JD (2004) Microbial diversity in soil: selection microbial populations by plant and soil type and implications for disease suppressiveness. Annu Rev Phytopathol 42: 243–270

    Article  CAS  Google Scholar 

  • Griffiths BS, Ritz K, Bardgett RD, Cook R, Christensen S, Ekelund F, SØrensen SJ, Bååth E, Bloem J, de Ruiter PC, Dolfing J, Nicolardot B (2000) Ecosystem response of pasture soil communities to fumigation- induced microbial diversity reductions: an examination of the biodiversity-ecosystem function relationship. Oikos 90:279–294

    Article  Google Scholar 

  • GrØnvold J, Svendsen TS, Kraglund H-O, Bresciani J, Monrad J (2004) Effect of the antiparasitic drugs fenbendazole and ivermectin on the soil nematode Pristionchus maupasi. Vet Parasitol 124:91–99

    Article  CAS  Google Scholar 

  • Halley BA, Winter R, Yoon S, Marley SE, Rehbein S (2005) The environmental safety of eprinomectin to earthworms. Vet Parasitol 128:109–114

    Article  CAS  Google Scholar 

  • Halling-SØrensen B, Nors Nielsen S, Lanzky PF, Ingerslev F, Holten LützhØft HC, JØrgensen SE (1998) Occurrence, fate and effects of pharmaceutical substances in the Environment – a review. Chemosphere 36:357–393

    Article  Google Scholar 

  • Halling-SØrensen B, SengelØv G, TjØrnelund J (2002) Toxicity of tetracyclines and tetracycline degradation products to environmentally relevant bacteria, including selected tetracycline-resistant bacteria. Arch Environ Con Tox 42:263–271

    Article  CAS  Google Scholar 

  • Halling-SØrensen B, Lykkeberg A, Ingerslev F, Blackwell P, Tjornelund J (2003) Characterisation of the abiotic degradation pathways of oxytetracyclines in soil interstitial water using LC-MS-MS. Chemosphere 50:1331–1342

    Article  Google Scholar 

  • Hamscher G, Sczesny S, Abu-Qare A, Höper H, Nau H (2000) Stoffe mit pharmakologischer Wirkung einschliesslich hormonell aktiver Substanzen in der Umwelt: Nachweis von Tetracyclinen in güllegedüngten Böden. Deutsche Tierarztl Woch 107:332–334

    CAS  Google Scholar 

  • Hamscher G, Sczesny S, Höper H, Nau H (2002) Determination of persistent tetracycline residues in soil fertilized with liquid manure by high-performance liquid chromatography with electrospray ionization tandem mass spectrometry. Anal Chem 74:1509–1518

    Article  CAS  Google Scholar 

  • Hamscher G, Pawelzick HT, Höper H, Nau H (2005) Different behaviour of tetracyclines and sulfonamides in sandy soils after repeated fertilization with liquid manure. Environ Toxicol Chem 24:861–868

    Article  CAS  Google Scholar 

  • Hempel H, Scheffczyk A, Schallnaβ H-J, Lumaret J-P, Alvinerie M, Rβmbke J (2006) Effects of four veterinary pharmaceuticals on the dung beetle Aphodius constans in the laboratory. Environ Toxicol Chem 25:3155–3163

    Article  CAS  Google Scholar 

  • Heuer H, Smalla K (2007) Manure and sulfadiazine synergistically increased bacterial antibiotic resistance in soil over at least two months. Environ Microbiol 9:657–666

    Article  CAS  Google Scholar 

  • Hund-Rinke K, Simon M, Lukow T (2004) Effects of tetracycline on the soil microflora: Function, diversity, resistance. J Soil Sed 4:11–16

    CAS  Google Scholar 

  • Ingham ER (1985) Review of the effects of 12 selected biocides on target and non-target soil organisms. Crop Protection 4:3–32

    Article  CAS  Google Scholar 

  • ISO (1999): Soil quality – Inhibition of reproduction of Collembola (Folsomia candida) by soil pollutants. International Organization for Standardization, Geneva, Switzerland (ISO 11267)

    Google Scholar 

  • Jensen J, Krogh PH, Sverdrup LE (2003) Effects of the antibacterial agents tiamulin, olanquindox and metronidazole and the anthelmintic ivermectin on the soil invertebrate species Folsomia fimetaria (Collembola) and Enchytraeus crypticus (Enchytraeidae). Chemosphere 50:437–443

    Article  Google Scholar 

  • Jensen LB, Baloda S, Boye M, Aarestrup FM (2001) Antimicrobial resistance among Pseudomonas spp. and the Bacillus cereus group isolated from Danish agricultural soil. Environ Int 26:581–587

    Article  CAS  Google Scholar 

  • Knecht JA de, Montforts MHMM (2001) Environmental risk assessment of veterinary medicine products: an evaluation of the registration procedure. SETAC Globe 2:29–30

    Google Scholar 

  • Kolar L, Kozuh Erzen N (2006) Veterinary pasiticides – are they posing an environmental risk? Slovenian Vet Res 43:85–96

    Google Scholar 

  • Kozuh Erzen N, Kolar L, Cerkvenik Flajs V, Kuzner J, Marc I, Pogacnik M (2005) Degradation of abamectin and doramectin on sheep grazed pasture. Ecotoxicology 14:627–635

    Article  CAS  Google Scholar 

  • Kreuzig R, Heis J, Höltge S (2006) Das Gülle-Projekt – Ausarbeitung eines Methodenkatalogs zur Untersuchung des Rückstandsverhaltens von Tierarzneimitteln in Gülle und güllegedüngten Böden. Mitt Umweltchem ökotox 12:39–42

    Google Scholar 

  • Kryger U, Deschodt C, Scholtz CH (2005) Effects of fluazuron and ivermectin treatment of cattle on the structure of dung beetle communities. Agr Ecosyst Environment 105:649–656

    Article  CAS  Google Scholar 

  • Larque-Saavedra A, Lang F (1988) Increase in the number of pods and flowers in bean plants by Aspirin. Proc Plant Growth Regul Soc Am 15:186–188

    Google Scholar 

  • Lebek G (1979) Nutritive antibiotic additives in animal feeding stuffs- a further form of environmental pollution. Zbl Bakt Mik Hyg B 168:562–567

    CAS  Google Scholar 

  • Lee CM, Wall R (2006a) Cow-dung colonization and decomposition following insect exclusion. Bull Entomol Res 96:315–322

    Article  CAS  Google Scholar 

  • Lee CM, Wall R (2006b) Distribution and abundance of insects colonizing cattle dung in South West England. J Nat Hist 40:1167–1177

    Article  Google Scholar 

  • Lin Q, Brookes PC (1999) An evaluation of the substrate-induced respiration method. Soil Biol Biochem 31:1969–1983

    Article  CAS  Google Scholar 

  • Lumaret J-P, Errouissi F (2002) Use of anthelminthics in herbivores and evaluation of risks for the non target fauna of pastures. Vet Res 33:547–562

    Article  CAS  Google Scholar 

  • Lumaret J-P, Alvinerie M, Hempel H, Schallnaβ H-J, Claret D, Römbke J (2006) New screening test to predict the potential impact of ivermectin-contaminated cattle dung on dung beetles. Vet Res 38:15–24

    Article  CAS  Google Scholar 

  • Maund S, Chapman P, Kedwards T, Tattersfield L, Matthiessen P, Warwick R, Smith E (1999) Application of multivariate statistics to ecotoxicological field studies. Environ Toxicol Chem 18:111–112

    Article  CAS  Google Scholar 

  • Migliore L (1995) Effect on plants of sulphadimethoxine used in intensive farming (Panicum miliaceum, Pisum sativum and Zea mays). Agr Ecosyst Environ 52:103–110

    Article  CAS  Google Scholar 

  • Migliore L, Brambilla G, Casoria P, Civitareale C, Cozzolino S, Gaudio L (1996a) Effect of sulphadimethoxine contamination on barley (Hordeum distichum L., Poaceae, Liliposida). Agr Ecosyst Environ 60:121–128

    Article  CAS  Google Scholar 

  • Migliore L, Brambilla G, Casoria P, Civitareale C, Cozzolino S, Gaudio L (1996b) Effects of antimicrobials for agriculture as environmental pollutants. Fresen Environ Bull 5:735–739

    CAS  Google Scholar 

  • Migliore L, Civitareale C, Cozzolino S, Casoria P, Brambilla G, Gaudio L (1998) Laboratory models to evaluate phytotoxicity of sulphadimethoxine on terrestrial plants. Chemosphere 37:2957–2961

    Article  CAS  Google Scholar 

  • Migliore L, Cozzolino S, Fiori M (2000) Phytotoxicity to and uptake of flumequine used in intensive aquaculture on the aquatic weed, Lythrum salicaria L. Chemosphere 40:741–750

    Article  CAS  Google Scholar 

  • Montforts MHMM (2005) The trigger values in the environmental risk assessment for (veterinary) medicines in the European Union: a critical appraisal. RIVM Report 601500002, 45 pp

    Google Scholar 

  • Noël HL, Hopkin SP, Hutchinson TH, Williams TD, Sibly RM (2006) Population growth rate and carrying capacity for springtails Folsomia candida exposed to ivermectin. Ecol Appl 16:656–665

    Article  Google Scholar 

  • OECD (1984) OECD-guideline for testing of chemicals No. 207. Earthworm acute toxicity test. Paris (Organisation for Economic Co-Operation and Development)

    Google Scholar 

  • OECD (2000a) OECD-Guideline for the testing of chemicals No 217. Soil microorganisms: Carbon transformation test. Paris (Organisation for Economic Co-Operation and Development)

    Google Scholar 

  • OECD (2000b) OECD-guideline for testing of chemicals No. 216. Soil microorganisms, nitrogen transformation test. Paris (Organisation for Economic Co-Operation and Development)

    Google Scholar 

  • OECD (2002) OECD-guideline for testing of chemicals No. 307. Aerobic and anaerobic transformation in soil. Paris (Organisation for Economic Co-Operation and Development)

    Google Scholar 

  • OECD (2004a) OECD-guideline for testing of chemicals No. 208. Terrestrial plant test: Seedling emergence and seedling growth test. Paris (Organisation for Economic Co-Operation and Development)

    Google Scholar 

  • OECD (2004b) OECD-guideline for testing of chemicals No. 220. Enchytraeidae reproduction test. Paris (Organisation for Economic Co-Operation and Development)

    Google Scholar 

  • OECD (2004c) OECD-guideline for testing of chemicals No. 222. Earthworm reproduction test. Paris (Organisation for Economic Co-Operation and Development)

    Google Scholar 

  • OECD (2006) Determination of Developmental Toxicity of a Test Chemical to Dipteran Dung Flies (Scatophaga stercoraria L. (Scatophagidae), Musca autumnalis De Geer (Muscidae)). Paris (Organisation for Economic Co-Operation and Development)

    Google Scholar 

  • Onan LJ, LaPara TM (2003) Tylosin-resistant bacteria cultivated from agricultural soil. FEMS Microbiol Lett 220:15–20

    Article  CAS  Google Scholar 

  • Patten DK, Wolf DC, Kunkle WE, Douglass LW (1980) Effect of antibiotics in beef cattle feces on nitrogen and carbon mineralization in soil and on plant growth and composition. J Environ Qual 9: 167–172

    Article  CAS  Google Scholar 

  • Pfeiffer C, Emmerling C, Schroeder D, Niemeyer J (1998) Antibiotika (Ivermectin, Monensin) und endokrine Umweltchemikalien (Nonylphenol, Ethinylöstradiol) im Boden. Umweltwissenschaften und Schadstoff-Forschung 10:147–153

    Article  CAS  Google Scholar 

  • Roberts BL, Dorough HW (1984) Relative toxicities of chemicals to the earthworm Eisenia foetida. Environ Toxicol Chem 3:67–78

    Article  CAS  Google Scholar 

  • Schmitt H, van Beelen P, Tolls J, van Leeuwen CL (2004) Pollution-induced community tolerance of soil microbial communities caused by the antibiotic sulfachloropyridazine. Environ Sci Technol 38: 1148–1153

    Article  CAS  Google Scholar 

  • Schmitt H, Martinali B, van Beelen P, Seinen W (2006a) On the limits of toxicant-induced tolerance testing: co-tolerance and response variation of antibiotic effects. Environ Toxicol Chem 25:1961–1968

    Article  CAS  Google Scholar 

  • Schmitt H, Stoob K, Hamscher G, Smit E, Seinen W (2006b) Tetracyclines and tetracycline resistance in agricultural soils – microcosm and field studies. Microbial Ecol 51:267–276

    Article  Google Scholar 

  • SengelØv G, AgersØ Y, Halling-SØrensen B, Baloda SB, Andersen J, Jensen LB (2003) Bacterial antibiotic resistance levels in Danish farmland as a result of treatment with pig manure slurry. Environ Int 28:587–595

    Article  Google Scholar 

  • Sun Y, Diao X, Zhang Q, Shen J (2005) Bioaccumulation and elimination of avermectin B1a in the earthworm (Eisenia fetida). Chemosphere 60:699–704

    Article  CAS  Google Scholar 

  • Svendsen TS, Baker GH (2002) Survival and growth of Aporrectodea longa (Lumbricidae) fed on sheep and cow dung with and without Moxidectin residues. Aust J Agr Res 53:447–451

    Article  Google Scholar 

  • Svendsen TS, Sommer C, Holter P, GrØnvold J (2002) Survival and growth of Lumbricus terrestris (Lumbricidae) fed on dung cattle given sustained-release boluses of ivermectin or fenbendazole. Eur J Soil Biol 38:389–392

    Article  Google Scholar 

  • Svendsen TS, GrØnvold J, Holter P, Sommer C (2003) Field effects of ivermectin and fenbendazole on earthworm populations and the disappearance of dung pats from bolus-treated cattle. Appl Soil Ecol 24:207–218

    Article  Google Scholar 

  • Svendsen TS, Hansen PE, Sommer C, Martinussen T, GrØnvold J, Holter P (2005) Life history characteristics of Lumbricus terrestris and effects of the veterinary antiparasitics compounds Ivermectin and fenbendazole. Soil Biol Biochem 37:927–936

    Article  CAS  Google Scholar 

  • Thiele-Bruhn S (2005) Microbial inhibition by pharmaceutical antibiotics in different soils – dose-response relations determined with the iron(III) reduction test. Environ Toxicol Chem 24:869–876

    Article  CAS  Google Scholar 

  • Thiele-Bruhn S, Beck IC (2005) Effects of sulfonamide and tetracycline antibiotics on soil microbial activity and microbial biomass. Chemosphere 59:457–465

    Article  CAS  Google Scholar 

  • Tu CM (1978) A screening technique for assessing effects of pesticides on population and activities of non-target soil microorganisms. Bull Environ Contam T 20:212–218

    Article  CAS  Google Scholar 

  • Ungemach FR (2000) Figures on quantities of antibacterials used for different purposes in the EU-countries and interpretation. Acta Vet Scand 93:89–98

    CAS  Google Scholar 

  • Vaclavik E, Halling-SØrensen B, Ingerslev F (2004) Evaluation of manometric respiration tests to assess the effects of veterinary antibiotics in soil. Chemosphere 56:667–676

    Article  CAS  Google Scholar 

  • VICH (International Cooperation on Harmonisation of Technical Requirements for Registration of Veterinary Medicinal Products) (2005) Environmental impact assessment for veterinary medicinal products – Phase II. Guidance. VICH GL 38, 38 pp

    Google Scholar 

  • Walker GE (1988) Phytophthora root-rot of container-grown citrus as affected by foliar sprays and soil drenches of phosphorus and acetyl salicyclic acids. Plant Soil 107:107–112

    Article  CAS  Google Scholar 

  • Wardhaugh KG (2005) Insecticidal activity of synthetic pyrethroids, organophosphates, insect growth regulators and other livestock parasiticides: an Australian perspective. Environ Toxicol Chem 24:789–796

    Article  CAS  Google Scholar 

  • Yoshimura H, Endoh YS, Harada K (2005) Gryllus bimaculatus: A possible bioindicator organism for detection of chemical pollutants in terrestrial systems. Ecol Indicator 5:181–188

    Article  CAS  Google Scholar 

  • Zielezny Y, Groeneweg J, Vereecken H, Tappe W (2006) Impact of sulfadiazine and chlorotetracycline on soil bacterial community structure and respiratory activity. Soil Biol Biochem 38:2372–2380

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Schmitt, H., Römbke, J. (2008). The Ecotoxicological Effects of Pharmaceuticals (Antibiotics and Antiparasiticides) in the Terrestrial Environment – a Review. In: Kümmerer, K. (eds) Pharmaceuticals in the Environment. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-74664-5_18

Download citation

Publish with us

Policies and ethics