Chronic Mixture Toxicity of Pharmaceuticals to Daphnia – The Example of Nonsteroidal Anti-Inflammatory Drugs

  • M. Cleuvers


Concentration Addition Environmental Risk Assessment Clofibric Acid Mixture Toxicity Reproduction Test 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Altenburger R, Boedeker W, Faust M, Grimme LH (1996) Regulations for combined effects of pollutants: consequences from risk assessment in aquatic toxicology. Food Chem Toxicol 34:1155–1157CrossRefGoogle Scholar
  2. Altenburger R, Backhaus T, Boedeker W, Faust M, Scholze M, Grimme LH (2000) Predictability of the toxicity of multiple chemical mixtures to Vibrio fischeri: mixtures composed of similarly acting chemicals. Environ. Toxicol Chem 19:2341–2347CrossRefGoogle Scholar
  3. Ashton D, Hilton M, Thomas KV (2004) Investigating the environmental transport of human pharmaceuticals to streams in the United Kingdom. Sci Tot Environ 333:167–184CrossRefGoogle Scholar
  4. Backhaus T, Grimme LH (1999) The toxicity of antibiotic agents to the luminescent bacterium Vibrio fischeri. Chemosphere 38:3291–3301CrossRefGoogle Scholar
  5. Berenbaum MC (1985) The expected effect of a combination of agents: the general solution. J Theoret Biol 114:413–431CrossRefGoogle Scholar
  6. Bliss CI (1939) The toxicity of poisons applied jointly. Ann Rev Appl Biol 26:585–615CrossRefGoogle Scholar
  7. Bundy GL (1985) Nonmammalian sources of eicosanoids. Adv Prostaglandin Thromboxane Leukotriene Res 14:229–262Google Scholar
  8. Buser HR, Poiger T, Müller MD (1998) Occurrence and fate of the pharmaceutical drug diclofenac in surface waters: rapid photodegradation in a lake. Environ Sci Technol 32:3449–3456CrossRefGoogle Scholar
  9. Buser HR, Poiger T, Müller MD (1999) Occurrence and experimental behaviour of the pharmaceutical drug ibuprofen in surface waters and in wastewater. Environ Sci Technol 33:2529–2535CrossRefGoogle Scholar
  10. Cleuvers M (2002) Aquatic Ecotoxicology of selected pharmaceutical agents–algal and acute Daphnia tests. UWSF-Z Umweltchem Ökotox 14:85–89Google Scholar
  11. Cleuvers M (2003) Aquatic ecotoxicity of selected pharmaceuticals including the assessment of combination effects. Toxicol Lett 142:185–194CrossRefGoogle Scholar
  12. Cleuvers M (2004) Mixture toxicity of the anti-inflammatory drugs diclofenac, ibuprofen, naproxen and acetylsalicylic acid. Ecotoxicol Environ Saf 59:309–315CrossRefGoogle Scholar
  13. Cleuvers M (2005) Initial risk assessment for three beta-blockers found in the aquatic environment. Chemosphere 59:199–205CrossRefGoogle Scholar
  14. Cleuvers M, Heinrichs G (2008) Chronic toxicity of various pharmaceuticals on Daphnia magna. In preparationGoogle Scholar
  15. Commission of the European Communities (1992) Methods for determination of ecotoxicity; Annex V, C.20, Daphnia magnareproduction test. EEC Directive 92/69/EECGoogle Scholar
  16. Deneer JW, Sinnige TL, Seinen W, Hermens JLM (1988) The joint acute toxicity to Daphnia magnaof industrial organic chemicals at low concentrations. Aquat Toxicol 12:33–38CrossRefGoogle Scholar
  17. EMEA (2006) Guideline on the environmental risk assessments of medicinal products for human use. European Medicines Agency, Committee for medicinal products for human use (CHMP), EMEA, CHMP, SWP/4447/00, London, UKGoogle Scholar
  18. Farre M, Ferrer I, Ginebreda A, Figueras M, Olivella L, Tirapu L, Vilanova M, Barcelo D (2001) Determination of drugs in surface water and wastewater samples by liquid chromatography and mass spectrometry: methods and preliminary results including toxicity studies with Vibrio fischeri. J Chromatogr A 938:187–197CrossRefGoogle Scholar
  19. Faust M, Altenburger R, Backhaus T, Blanck H, Boedeker W, Gramatica P, Hamer V, Scholze M, Vighi M, Grimme LH (2001) Predicting the joint algal toxicity of multi-component s-triazine mixtures at loweffect concentrations of individual toxicants. Aquat Toxicol 56:13–32CrossRefGoogle Scholar
  20. Ferrari B, Paxeus N, Lo Giudice R, Pollio A, Garric J (2003) Ecotoxicological impact of pharmaceuticals found in treated waste waters: study of carbamazepine, clofibric acid and diclofenac. Ecotoxicol Environ Saf 55:359–370CrossRefGoogle Scholar
  21. Heberer T (2002) Occurrence, fate, and removal of pharmaceutical residues in the aquatic environment: a review of recent research data. Toxicol Lett 131:5–17CrossRefGoogle Scholar
  22. Heberer T, Verstraeten IM, Meyer MT, Mechlinski A, Reddersen K (2001a) Occurrence and fate of pharmaceuticals during bank filtration – preliminary results from investigations in Germany and the United States. Water Resources Update 120: 4–17Google Scholar
  23. Heberer T, Fuhrmann B, Schmidt-Bäumler K, Tsipi D, Koutsouba V, Hiskia A (2001b). Occurrence of pharmaceutical residues in sewage, river, ground and drinking water in Greece and Germany. In: Daughton CG, Jones-Lepp T (eds) Pharmaceuticals and personal care products in the environment: scientific and regulatory issues. American Chemical Society, Washington DC, US, pp 70–83Google Scholar
  24. Heberer T, Reddersen K, Mechlinski A (2002) From municipal sewage to drinking water: fate and removal of pharmaceutical residues in the aquatic environment in urban areas. Water Sci Technol 46:81–88Google Scholar
  25. Henschel KP, Wenzel A, Diederich M, Fliedner A (1997) Environmental hazard assessment of pharmaceuticals. Reg Toxicol Pharmacol 25:220–225CrossRefGoogle Scholar
  26. Hoeger B, Köllner B, Dietrich DR, Hitzfeld B (2005) Water-borne diclofenac affects kidney and gill integrity and selected immune parameters in brown trout (Salmno truttaf. fario). Aquat Toxicol 75:53–64CrossRefGoogle Scholar
  27. Jones OAH, Voulvoulis N, Lester JN (2002) Aquatic environmental assessment of the top 25 English prescription pharmaceuticals. Water Res 36:5013–5022CrossRefGoogle Scholar
  28. Klüttgen B, Dülmer U, Engels M, Ratte HT (1994) ADaM, an artificial freshwater for the culture of zooplankton. Water Res 28:743–746CrossRefGoogle Scholar
  29. Koutsouba V, Heberer T, Fuhrmann B, Schmidt-Baumler K, Tsipi D, Hiskis A (2003) Determination of polar pharmaceuticals in sewage water of Greece by gas chromatography-mass spectrometry. Chemosphere 51:69–75CrossRefGoogle Scholar
  30. Kümmerer K (ed) (2001) Pharmaceuticals in the environment. Sources, fate, effects and risks. Springer-Verlag, Berlin, GermanyGoogle Scholar
  31. Loewe S, Muischnek H (1926) über Kombinationswirkungen. 1. Mitteilung: Hilfsmittel der Fragestellung. Naunyn-Schmiedebergs Archiv für experimentelle Pathologie und Pharmakologie 114:313–326CrossRefGoogle Scholar
  32. Nomura T (1988) Phylogenic aspects of prostaglandins. Seitai Bogyo 5:67–74Google Scholar
  33. Oaks JL, Gilbert M, Virani MZ, Watson RT, Meteyer CU, Rideout BA, Shivaprasad HL, Ahmed S, Chaudhry MJI, Arshad M, Mahmood S, Ali A, Khan AA (2004) Diclofenac residues as the cause of population decline of vultures in Pakistan. Nature 427:630–633CrossRefGoogle Scholar
  34. Pöch G (1993) Combined effects of drugs and toxic agents. Modern evaluation in theory and practice. Springer Verlag, Berlin, GermanyGoogle Scholar
  35. Rowley AE, Vogan CL, Taylor GW, Clare AS (2005) Prostaglandins in non-insectan invertebrates: recent insights and unsolved problems. J Exp Biol 208:3–14CrossRefGoogle Scholar
  36. Schwabe U, Paffrath D (ed.) (2003) Arzneiverordnungsreport, Springer Verlag, Berlin, GermanyGoogle Scholar
  37. Schwaiger J, Ferling H, Mallow U, Wintermayr H, Negele RD (2004) Toxic effects of the non-steroidal anti-inflammatory drug diclofenac. Part I: histopathological alterations and bioaccumulation in rainbow trout. Aquat Toxicol 68:141–150CrossRefGoogle Scholar
  38. Silva E, Rajapakse N, Kortenkamp A (2002) Something from “nothing” – eight weak estrogenic chemicals combined at concentrations below NOECs produce significant mixture effects. Environ Sci Technol 36:1751–1756CrossRefGoogle Scholar
  39. Stanley-Samuelson DW (1994) Assessing the significance of prostaglandins and other eicosanoids in insect physiology. J Insect Physiol 40:3–11CrossRefGoogle Scholar
  40. Stumpf M, Ternes TA, Haberer K, Seel P, Baumann W (1996) Nachweis von Arzneimittelrückständen in Kläranlagen und Flieβgewässern. Vom Wasser 86:291–303Google Scholar
  41. Stumpf M, Ternes TA, Wilken RD, Rodrigues SV, Baumann W (1999) Polar drug residues in sewage and natural waters in the state of Rio de Janeiro, Brazil. Sci Total Environ 225:135–141CrossRefGoogle Scholar
  42. Tauxe-Wuersch A, De Alencastro LF, Grandjean D, Tarradellas J (2005) Occurrence of several acidic drugs in sewage treatment plants in Switzerland and risk assessment. Water Res 39:1761–1772CrossRefGoogle Scholar
  43. Tixier C, Singer HP, Oellers S, Müller SR (2003) Occurrence and fate of carbamazepine, clofibric acid, diclofenac, ibuprofen, ketoprofen, and naproxen in surface waters. Environ Sci Technol 37:1061–1068CrossRefGoogle Scholar
  44. Ternes TA (1998) Occurrence of drugs in German sewage treatment plants and rivers. Water Res 32:3245–3260CrossRefGoogle Scholar
  45. Ternes TA (2001) In: Daughton CG, Jones-Lepp T (eds) Pharmaceuticals and personal care products in the environment: scientific and regulatory issues. American Chemical Society, Washington DC, US, pp 39–54Google Scholar
  46. Ternes TA, Stumpf M, Schuppert B, Haberer K (1998) Simultaneous determination of antiseptics and acidic drugs in sewage and river water. Vom Wasser 90:295–309Google Scholar
  47. Triebskorn R, Casper H, Heyd A, Eikemper R, Köhler HR, Schwaiger J (2004) Toxic effects of the nonsteroidal anti-inflammatory drug diclofenac. Part II: cytological effects in liver, kidney, gills, and intestine of rainbow trout (Oncorhynchus mykiss). Aquat Toxicol 68:151-166CrossRefGoogle Scholar
  48. Triebskorn R, Casper H, Scheil V, Schwaiger J (2007) Ultrastructural effects of pharmaceuticals (carbamazepine, clofibric acid, metoprolol, diclofenac) in rainbow trout (Oncorhynchus mykiss) and common carp (Cyprinus carpio). Anal Bioanal Chem 387:1405–1416CrossRefGoogle Scholar
  49. Van Leeuwen CJ, van der Zandt PTJ, Aldenberg T, Verhaar HJM, Hermens JLM (1992) Application of QSARs, extrapolation and equilibrium partitioning in aquatic assessment: I. Narcotic industrial pollutants. Environ Toxicol Chem 11:267–282CrossRefGoogle Scholar
  50. Van Loon WMGM, Verwoerd ME, Eijnker FG, van Leeuwen CJ, van Duyn P, van deGuchte C, Hermens JLM (1997) Estimating total body residues and baseline toxicity of complex organic mixtures in effluents and surface waters. Environ Toxicol Chem 16:1358–1365CrossRefGoogle Scholar
  51. Vane JR (1971) Inhibition of Prostaglandin synthesis as a mechanism of action for aspirin like drugs. Nature 231:232–235Google Scholar
  52. Vane JR, Botting RM (1998) Mechanism of Action of Nonsteroidal Anti-inflammatory Drugs. The American Journal of Medicine 104:2S–8SCrossRefGoogle Scholar
  53. Verhaar HJM, van Leeuwen CJ, Hermens JLM (1992) Classifying environmental pollutants. 1. Structureactivity relationships for prediction of aquatic toxicology. Chemosphere 25:471–491CrossRefGoogle Scholar
  54. Webb S (2001) In: Kümmerer K (ed) Pharmaceuticals in the environment. Sources, fate, effects and risks. Springer-Verlag, Berlin, GermanyGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • M. Cleuvers
    • 1
  1. 1.Head of Business Unit Industrial Chemicals – REAChDr. Knoell Consult GmbH Marie-Curie-Straβe 8 51377 LeverkusenGermany

Personalised recommendations