On the Ecotoxicology of Pharmaceutical Mixtures

  • T. Backhaus
  • J. Sumpter
  • H. Blanck


Mixture Component Environmental Risk Assessment Clofibric Acid Environ Toxicol Chemical Mixture 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Altenburger R, Backhaus T, Boedeker W, Faust M, Scholze M, Grimme LH (2000) Predictability of the toxicity of multiple chemical mixtures to Vibrio fischeri: Mixtures composed of similarly acting compounds. Environ Toxicol Chem 19:2341–2347CrossRefGoogle Scholar
  2. Backhaus T, Scholze M, Grimme LH (1999) The single substance and mixture toxicity of quinolones to the bioluminescent bacterium Vibrio fischeri. Aquat Toxicol 49:49–61CrossRefGoogle Scholar
  3. Backhaus T, Altenburger R, Boedeker W, Faust M, Scholze M, Grimme LH (2000) Predictability of the toxicity of a multiple mixture of dissimilarly acting chemicals to Vibrio fischeri. Environ Toxicol Chem 19:2348–2356CrossRefGoogle Scholar
  4. Berenbaum MC (1989) What is synergy? Pharmacol Rev 1989:93–141Google Scholar
  5. Bliss CI (1939) The toxicity of poisons applied jointly. Ann J Appl Biol 26:585–615CrossRefGoogle Scholar
  6. Boedeker W, Altenburger R, Faust M, Grimme LH (1990) Methods for the assessment of mixtures of plant protection substances (pesticides): Mathematical analysis of combination effects in phytopharmacology and ecotoxicology. Nachrichtenblatt des deutschen Pflanzenschutzes 42:70–78Google Scholar
  7. Boedeker W, Altenburger R, Faust M, Grimme LH (1992) Synopsis of concepts and models for the quantitative analysis of combination effects: from biometrics to ecotoxicology. ACES 4:45–53Google Scholar
  8. Borgmann U, Bennie DT, Ball AL, Palabrica V (2007) Effect of a mixture of seven pharmaceuticals on Hyalella azteca over multiple generations. Chemosphere 66:1278–1283CrossRefGoogle Scholar
  9. Brian JV, Harris CA, Scholze M, Backhaus T, Booy P, Lamoree M, Pojana G, Jonkers N, Runnalls T, Bonfa A, Marcomini A, Sumpter JP (2005) Accurate prediction of the response of freshwater fish to a mixture of estrogenic chemicals. Environ Health Perspect 113:721–728Google Scholar
  10. Brain RA, Johnson DJ, Richards SM, Hanson ML, Sanderson H, Lam MW, Young C, Mabury SA, Sibley PK, Solomon KR (2004) Microcosm evaluation of the effects of an eight pharmaceutical mixture to the aquatic macrophytes Lemna gibba and Myriophyllum sibiricum. Aquat Toxicol 70:23–40CrossRefGoogle Scholar
  11. Brain RA, Sanderson H, Sibley PK, Solomon KR (2006) Probabilistic ecological hazard assessment: evaluating pharmaceutical effects on aquatic higher plants as an example. Ecotoxicol Environ Saf 64:128–135CrossRefGoogle Scholar
  12. Carlsson C, Johansson AK, Alvan G, Bergman K, Kuhler T (2006) Are pharmaceuticals potent environmental pollutants? Part I: Environmental risk assessments of selected active pharmaceutical ingredients. Sci Total Environ 364:67–87CrossRefGoogle Scholar
  13. Christensen AM, Ingerslev F, Baun A (2006) Ecotoxicity of mixtures of antibiotics used in aquacultures. Environ Toxicol Chem 25:2208–2215CrossRefGoogle Scholar
  14. Cleuvers M (2003) Aquatic ecotoxicity of pharmaceuticals including the assessment of combination effects. Toxicol Lett 142:185–194CrossRefGoogle Scholar
  15. Cleuvers M (2004) Mixture toxicity of the anti-inflammatory drugs diclofenac, ibuprofen, naproxen, and acetylsalicylic acid. Ecotoxicol Environ Saf 59:309–315CrossRefGoogle Scholar
  16. Cleuvers M (2005) Initial risk assessment for three beta-blockers found in the aquatic environment. Chemosphere 59:199–205CrossRefGoogle Scholar
  17. Christensen AM, Faaborg-Andersen S, Ingerslev F, Baun A (2007) Mixture and single-substance toxicity of selective serotonin reuptake inhibitors toward algae and crustaceans. Environ Toxicol Chem 26:85–91CrossRefGoogle Scholar
  18. Crane M, Watts C, Boucard T (2006) Chronic aquatic environmental risks from exposure to human pharmaceuticals. Sci Total Environ 367:23–41CrossRefGoogle Scholar
  19. Doerr-MacEwen NA, Haight ME (2006) Expert stakeholders’ views on the management of human pharmaceuticals in the environment. Environ Manage 38:853–866CrossRefGoogle Scholar
  20. Drescher K, Boedeker W (1995) Assessment of the combined effects of substances: The relationship between concentration addition and independent action. Biometrics 51:716–730CrossRefGoogle Scholar
  21. Eguchi K, Nagase H, Ozawa M, Endoh YS, Goto K, Hirata K, Miyamoto K, Yoshimura H (2004) Evaluation of antimicrobial agents for veterinary use in the ecotoxicity test using microalgae. Chemosphere 57:1733–1738CrossRefGoogle Scholar
  22. EMEA (1998) Note for guidance: environmental risk assessment for veterinary medicinal products other than GMO-containing and immunological products. European Agency for the Evaluation of Medicinal Products, London (EMEA/CVMP/055/96-FINAL)Google Scholar
  23. EMEA (2006) Guideline on the environmental risk assessment of medicinal products for human use. European Agency for the Evaluation of Medicinal Products, London (EMEA/CHMP/SWP/4447/00)Google Scholar
  24. Escher BI, Bramaz N, Eggen RI, Richter M (2005) In vitro assessment of modes of toxic action of pharmaceuticals in aquatic life. Environ Sci Technol 39:3090–3100CrossRefGoogle Scholar
  25. Faust M (1999) Kombinationseffekt von Schadstoffen auf aquatische Organismen: Prüfung der Vorhersagbarkeit am Beispiel einzelliger Grünalgen. GCA-Verlag, Herdecke (ISBN 3-934389-28-7)Google Scholar
  26. Faust M, Altenburger R, Backhaus T, Boedeker W, Gramatica P, Hamer V, Scholze M, Vighi M, Grimme LH (2001) Predicting the joint algal toxicity of multi-component s-triazine mixtures at low-effect concentrations of individual toxicants. Aquat Toxicol 56:13–32CrossRefGoogle Scholar
  27. Faust M, Altenburger R, Backhaus T, Blanck H, Boedeker W, Gramatica P, Hamer V, Scholze M, Vighi M, Grimme LH (2003) Joint algal toxicity of 16 dissimilarly acting chemicals is predictable by the concept of independent action. Aquat Toxicol 63:43–63CrossRefGoogle Scholar
  28. Fent K, Escher C, Caminada D (2006) Estrogenic activity of pharmaceuticals and pharmaceutical mixtures in a yeast reporter gene system. Reprod Toxicol 22:175–185CrossRefGoogle Scholar
  29. Flaherty CM, Dodson SI (2005) Effects of pharmaceuticals on Daphnia survival, growth, and reproduction. Chemosphere 61:200–207CrossRefGoogle Scholar
  30. Gabrielsson J, Lindberg NO, Lundstedt T (2002) Multivariate methods in pharmaceutical applications. Journal of Chemometrics 16:141–160CrossRefGoogle Scholar
  31. Grimme LH, Altenburger R, Boedeker W, Faust M (1994) Kombinationswirkungen von Schadstoffen – Toxizität binärer Kombinationen von Pestiziden und Tensiden im Algenbiotest. Federal Environmental Agency, Berlin/Dessau (94-102 07 205)Google Scholar
  32. Halling-Sørensen B (2001) Inhibition of aerobic growth and nitrification of bacteria in sewage sludge by antibacterial agents. Arch Environ Contam Toxicol 40:451–460CrossRefGoogle Scholar
  33. Han GH, Hur HG, Kim SD (2006) Ecotoxicological risk of pharmaceuticals from wastewater treatment plants in Korea: occurrence and toxicity to Daphnia magna. Environ Toxicol Chem 25:265–271CrossRefGoogle Scholar
  34. Junghans M (2004) Studies on combination effects of environmentally relevant toxicants: Validation of prognostic concepts for assessing the algal toxicity of realistic aquatic pesticide mixtures, PhD-Thesis, University of BremenGoogle Scholar
  35. Junghans M, Backhaus T, Faust M, Scholze M, Grimme LH (2006) Application and validation of approaches for the predictive hazard assessment of realistic pesticide mixtures. Aquat Toxicol 76:93–110CrossRefGoogle Scholar
  36. Kodell RL, Pounds JG (1991) Assessing the toxicity of mixtures of chemicals. In: Krewski D, Franklin C (eds) Statistics in toxicology. Gordon and Breach, New YorkGoogle Scholar
  37. Lienert J, Gudel K, Escher BI (2007) Screening method for ecotoxicological hazard assessment of 42 pharmaceuticals considering human metabolism and excretory routes. Environ Sci Technol 41:4471–4478CrossRefGoogle Scholar
  38. Krishnan K, Andersen ME, Clewell HJ, Yang RSH (1994) Physiologically based pharmacokinetic modeling of chemical mixtures. In: Yang RSH (ed) Toxicology of chemical mixtures: case studies, mechanisms and novel approaches. Academic Press, San DiegoGoogle Scholar
  39. Loewe S (1927) Die Mischarznei. Versuch einer allgemeinen Pharmakologie der Arzneikombinationen. Klin Wochenschr 6:1077–1085CrossRefGoogle Scholar
  40. Loewe S, Muischnek H (1926) Über Kombinationswirkungen. 1. Mitteilung: Hilfsmittel der Fragestellung. Nanyn-Schmiedebergs Arch Exp Pathol Pharmakol 114:313–326CrossRefGoogle Scholar
  41. Miege C, Favier M, Brosse C, Canler JP, Coquery M (2006) Occurrence of betablockers in effluents of wastewater treatment plants from the Lyon area (France) and risk assessment for the downstream rivers. Talanta 70:739–744CrossRefGoogle Scholar
  42. Moore DRJ, Caux PY (1997) Estimating low toxic effects. Environ Toxicol Chem 16:794–801CrossRefGoogle Scholar
  43. Nash JP, Kime DE, Van der Ven LT, Wester PW, Brion F, Maack G, Stahlschmidt-Allner P, Tyler CR (2004) Long-term exposure to environmental concentrations of the pharmaceutical ethynylestradiol causes reproductive failure in fish. Environ Health Perspect 112:1725–1733Google Scholar
  44. Oaks JL, Gilbert M, Virani MZ, Watson RT, Meteyer CU, Rideout BA, Shivaprasad HL, Ahmed S, Chaudhry MJ, Arshad M, Mahmood S, Ali A, Khan AA (2004) Diclofenac residues as the cause of vulture population decline in Pakistan. Nature 427:630–633CrossRefGoogle Scholar
  45. O’Brien E, Dietrich DR (2004) Hindsight rather than foresight: reality versus the EU draft guideline on pharmaceuticals in the environment. Trends Biotechnol 22:326–330CrossRefGoogle Scholar
  46. Pomati F, Castiglioni S, Zuccato E, Fanelli R, Vigetti D, Rossetti C, Calamari D (2006) Effects of a complex mixture of therapeutic drugs at environmental levels on human embryonic cells. Environ Sci Technol 40:2442–2447CrossRefGoogle Scholar
  47. Purdom C, Hardiman P, Bye V, Eno N, Tyler C, Sumpter J (1994) Estrogenic effects of effluent from sewage works. Chemical Ecology 8:275–285CrossRefGoogle Scholar
  48. Rajapakse N, Silva E, Kortenkamp A (2002) Combining xenoestrogens at levels below individual noobserved- effect concentrations dramatically enhances steroid hormone action. Environ Health Perspect 110:917–921Google Scholar
  49. Richards SM, Wilson CJ, Johnson DJ, Castle DM, Lam M, Mabury SA, Sibley PK, Solomon KR (2004) Effects of pharmaceutical mixtures in aquatic microcosms. Environ Toxicol Chem 23:1035–1042CrossRefGoogle Scholar
  50. Schallenberg M, Armstrong A (2004) Assessment of antibiotic activity in surface water of the lower Taieri Plan and impacts on aquatic bacteria in Lake Waipori, South Otago, New Zealand. New Zeal J Mar Fresh 38:19–28CrossRefGoogle Scholar
  51. Scholze M, Boedeker W, Faust M, Backhaus T, Altenburger R, Grimme LH (2001) A general best-fit method for concentration-response curves and the estimation of low-effect concentrations. Environ Toxicol Chem 20:448–457CrossRefGoogle Scholar
  52. Silva E, Rajapakse N, Kortenkamp A (2002) Something from “nothing”—eight weak estrogenic chemicals combined at concentrations below NOECs produce significant mixture effects. Environ Sci Technol 36:1751–1756CrossRefGoogle Scholar
  53. Stuer-Lauridsen F, Birkved M, Hansen L, Lützhøft H, Halling-Sørensen B (2000) Environmental risk assessment of human pharmaceuticals in Denmark after normal therapeutic use. Chemosphere 40:783–793CrossRefGoogle Scholar
  54. Sumpter JP, Johnson AC, Williams RJ, Kortenkamp A, Scholze M (2006) Modeling effects of mixtures of endocrine disrupting chemicals at the river catchment scale. Environ Sci Technol 40:5478–5489CrossRefGoogle Scholar
  55. US EPA (2000) Supplementary guidance for conducting health risk assessment of chemical mixtures. U.S. Environmental Protection Agency, Risk Assessment Forum (EPA/600/8-90/064)Google Scholar
  56. US EPA (2002) Guidance on cumulative risk assessment of pesticide chemicals that have a common mechanism of toxicity. U.S. Environmental Protection Agency, Office of Pesticide Programs, WashingtonGoogle Scholar
  57. Walter H, Consolaro F, Gramatica P, Scholze M, Altenburger R (2002) Mixture toxicity of priority pollutants at No Observed Effect Concentrations (NOECs). Ecotoxicology 11:299–310CrossRefGoogle Scholar
  58. Warne MSJ, Hawker DW (1995) The number of components in a mixture determines whether synergistic and antagonistic or additive toxicity predominate: The funnel hypothesis. Toxicology and Environmental Safety 31:23–28CrossRefGoogle Scholar
  59. Wilson CJ, Brain RA, Sanderson H, Johnson DJ, Bestari KT, Sibley PK, Solomon KR (2004) Structural and functional responses of plankton to a mixture of four tetracyclines in aquatic microcosms. Environ Sci Technol 38:6430–6439CrossRefGoogle Scholar
  60. Yang RSH, El-Masri HA, Thomas RS, Constan AA (1995a) The use of physiologically-based pharmacokinetic/pharmacodynamic dosimetry models for chemical mixtures. Toxicol Lett Amst 82/83:497–504CrossRefGoogle Scholar
  61. Yang RSH, El-Masri HA, Thomas RS, Constan AA, Tessari JD (1995b) The application of physiologically based pharmacokinetic/pharmacodynamic (PBPK/PD) modeling for exploring risk assessment approaches of chemical mixtures. Toxicol Lett 79:193–200CrossRefGoogle Scholar
  62. Yang RSH, Thomas RS, Gustafson DL, Campain J, Benjamin SA, Verhaar HJM, Mumtaz MM (1998) Approaches to developing alternative and predictive toxicology based on PBPK/PD and QSAR modeling. Environ Health Perspect 106:1385–1393CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • T. Backhaus
    • 1
  • J. Sumpter
    • 2
  • H. Blanck
    • 3
  1. 1.Department of Plant and Environmental SciencesUniversity of GothenburgSweden
  2. 2.Inst. for the EnvironmentBrunel UniversityUxbridgeUnited Kingdom
  3. 3.Dep. of Plant and Env. SciencesGöteborg UniversitySweden

Personalised recommendations