Skip to main content

Near-Infrared Spectroscopy (NIRS)

  • Chapter
Springer Handbook of Medical Technology

Part of the book series: Springer Handbooks ((SHB))

  • 9579 Accesses

Abstract

One of the greatest challenges facing medicine is to treat the patient using real-time data that accurately reflect oxygen concentration in the patient’s tissue. Regulation of oxygen and its counterpart, carbon dioxide, is controlled by a large number of physiological control systems that are local, regional, and systemic. This key molecule is involved in oxidative metabolism and is an overall indicator of physiological well-being. Oxygen is attached to hemoglobin and released into cells, where it diffuses to mitochondria for utilization to produce adenosine triphosphate (ATP) that powers all cellular functions. The biomedical value of nearinfrared spectroscopy (NIRS) is its ability to record oxygen levels, especially StO2, in a noninvasive manner. In clinical cases, peripheral StO2 values recorded from the forearm and thenar regions are frequently used as surrogates for central oxygen levels. Thus, NIRS holds the promise of being a major tool in normal and pathological functioning. Applications of this technology are far reaching and range from monitoring patients suffering from septic shock, type 2 diabetes to schizophrenia. Use of NIRS has great promise but suffers from two major types of issues: technical and physiological. There are different types of NIRS devices which detect oxygen concentrations using different probing strategies and different algorithms. In addition to the dissimilar NIRS technologies is the fact that the NIRS signal has a number of anatomical, e.g., fat, and physiological barriers, e.g., skin blood flow, before it reaches the muscle/organ vascular bed. Various regions of the body, e.g., thenar versus forearm, have dissimilar cardiovascular responses to physiology and pathophysiological conditions, making interpretation challenging. This chapter presents a brief overview of NIRS technology, its applicability, and promise.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 269.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R. Bezemer, J.M. Karemaker, E. Klijn, D. Martin, K. Mitchell, M. Heger, C. Ince: Simultaneous multidepth assessment of tissue oxygen saturation in thenar and forearm using near-infrared spectroscopy during a simple cardiovascular challenge, Crit. Care Med. 13, S5 (2009)

    Google Scholar 

  2. S.M. Cohn, A.B. Nathens, F.A. Moore, P. Rhee, J.C. Puyana, E.E. Moore, G.J. Beilman: Tissue oxygen saturation predicts the development of organ dysfunction during traumatic shock resuscitation, J. Trauma 62(1), 44–55 (2007)

    Article  Google Scholar 

  3. F.E. Barton: Theory and principles of near infrared spectroscopy, Spectrosc. Eur. 14(1), 12–18 (2002)

    Google Scholar 

  4. G.J. Beilman, J.J. Blondet: Near-infrared spectroscopy-derived tissue oxygen saturation in battlefield injuries: A case series report, World J. Emerg. Surg. 4, 25 (2009)

    Article  Google Scholar 

  5. D.E. Myers, L.D. Anderson, R.P. Seifert, J.P. Ortner, C.E. Cooper, G.J. Beilman, J.D. Mowlem: Noninvasive method for measuring local hemoglobin oxygen saturation tissue using wide gap second derivative near-infrared spectroscopy, J. Biomed. Opt. 10(3), 034017 (2005)

    Article  Google Scholar 

  6. S.M. Coyle: Brain-computer interface using a simplified functional near-infrared spectroscopy system, J. Neural Eng. 4, 219–226 (2007)

    Article  Google Scholar 

  7. B.A. Crookes, S.M. Cohn, S. Bloch, J. Amortegui, R. Manning, P. Li, M.S. Proctor, A. Hallal, L.H. Blackbourne, R. Benjamin, D. Soffer, F. Habib, C.I. Schulman, R. Duncan, K.G. Proctor: Can near-infrared spectroscopy identify the severity of shock trauma patients?, J. Trauma-Inj. Infect. Crit. Care 58(4), 806–816 (2005)

    Article  Google Scholar 

  8. B.R. Soller, K.L. Ryan, C.A. Rickards, W.H. Cooke, Y. Yang, O.O. Soyemi, B.A. Crookes, S.O. Heard, V.A. Convertino: Oxygen saturation determined from deep muscle, not thenar tissue, is an early indicator of central hypovoluminain humans, Crit. Care Med. 37(1), 384–385 (2009)

    Article  Google Scholar 

  9. R.S. Pozos, J.M. McNulty: Influence of skin blood flow on NIRS StO2 readings on the forearm, Preliminary Data (2009)

    Google Scholar 

  10. A. Villringer, B. Chance: Noninvasive optical spectroscopy and imaging of human brain function, Trends Neurosci. 20(10), 435–442 (1997)

    Article  Google Scholar 

  11. M.J. Buono, P.W. Miller, C. Hom, R.S. Pozos, F.W. Kolkhorst: Skin blood flow affects in vivo near-infrared spectroscopy measurements in human skeletal muscle, Jpn. J. Physiol. 55(4), 241–244 (2005)

    Article  Google Scholar 

  12. N. Shah, A.E. Cerussi, D. Jakubowski, D. Hsiang, J. Butler, B.J. Tromberg: The role of diffuse optical spectroscopy in the clinical management of breast cancer, Dis. Markers 19(2/3), 95–105 (2003–2004)

    Google Scholar 

  13. M.A. Underwood, J.M. Milstein, P.M. Sherman: Near-infrared spectroscopy as a screening tool for patient ductus arteriosus in extremely low birth weights infants, Neonatology 91(2), 134–139 (2007)

    Article  Google Scholar 

  14. N. Jones, M. Terblanche: Tissue saturation measurement-exciting prospects but standardization and reference data still needed, Crit. Care Med. 14, 169–172 (2010)

    Article  Google Scholar 

  15. H. Gomez, A. Torres, P. Polanco, H.K. Kim, S. Zenker, J.C. Puyana, M.R. Pinsky: Intensive Care Med. 34, 1600–1607 (2008)

    Article  Google Scholar 

  16. J. Creteur, T. Carollo, G. Soldati, G. Buchele, D. De Backer, J.-L. Vincent: The prognostic value of muscle StO2 in septic patients, Intensive Care Med. 33, 1549–1556 (2007)

    Article  Google Scholar 

  17. K. Nagashima, T. Yoshida, H. Nose, A. Takamata, T. Morimoto: Negative pressure breathing and the control of skin blood flow during exercise in a hot environment, N. Y. Acad. Sci. 813, 604–609 (1997)

    Article  Google Scholar 

  18. K. Abozguia, T.T. Phan, G.N. Shivu, A.R. Maher, I. Ahmed, A. Wagenmakers, M.P. Frenneaux: Reduced in vivo skeletal muscle oxygen consumption in patients with chronic heart failure — A study using near infrared spectrophotometry (NIRS), Eur. J. Heart Fail. 10(7), 652–657 (2008)

    Article  Google Scholar 

  19. L. Skov, O. Pryds, G. Greisen: Estimating cerebral blood flow in newborn infants: Comparison of near infrared spectroscopy and 133Xe clearance, Pediatr. Res. 30(6), 570–573 (1991)

    Article  Google Scholar 

  20. A. Villringer, J. Planck, C. Hock, L. Schleinkofer, U. Dirnagl: Near infrared spectroscopy (NIRS): A new tool to study hemodynamic changes during activation of brain function in human adults, Neurosci. Lett. 154, 101–104 (1993)

    Article  Google Scholar 

  21. A.J. Comerota, R.C. Throm, P. Kelly, M. Jaff: Tissue (muscle) oxygen saturation (StO2): A new measure of symptomatic lower extremity arterial disease, J. Vasc. Surg. 38(4), 724–729 (2003)

    Article  Google Scholar 

  22. S.P. Mortensen, E.A. Dawson, C.C. Yoshiga, M.K. Dalsgaard, R. Damsgaard, N.H. Secher, J. GonzĂ¡lez-Alonso: Limitations to systemic and locomotor limb muscle oxygen delivery and uptake during maximal exercise in humans, J. Physiol. 566, 273285 (2005)

    Article  Google Scholar 

  23. A. Kumar, J.F. Parrillo: Shock: Pathophysiology, classification and approach to mangement. In: Critical Care Medicine: Principles of Diagnosis and Management in the Adult, ed. by J.E. Parrillo, R.P. Dellinger (Mosby, St. Louis 2007) pp.379–422

    Google Scholar 

  24. S.L. Davis, P.J. Fadel, J. Cui, G.D. Thomas, C.G. Crandall: Skin blood flow influences near-infrared spectroscopy-derived measurements of tissue oxygenation during heat stress, J. Appl. Physiol. 100, 221–224 (2006)

    Article  Google Scholar 

  25. R.S. Pozos, M.J. Born: Influence of skin blood flow on NIRS StO2 readings on the thenar, Preliminary Data (2009)

    Google Scholar 

  26. V. Quaresima, M. Ferrari: Evaluation of the skin blood flow contribution to the noninvasive measurement of muscle oxygenation by near infrared spectroscopy, J. Physiol. Sci. 56(3), 267–268 (2006)

    Article  Google Scholar 

  27. M.J. Joyner: Cutaneous blood flow: Uncomfortable in our own skin?, Am. J. Physiol. Heart Circ. Physiol. 296, H29–H30 (2008)

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

McNulty, J., Born, M., Pozos, R.S. (2011). Near-Infrared Spectroscopy (NIRS). In: Kramme, R., Hoffmann, KP., Pozos, R.S. (eds) Springer Handbook of Medical Technology. Springer Handbooks. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-74658-4_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-74658-4_22

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-74657-7

  • Online ISBN: 978-3-540-74658-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics