Constructing Empirical Models for Automatic Dialog Parameterization

  • Mikhail Alexandrov
  • Xavier Blanco
  • Natalia Ponomareva
  • Paolo Rosso
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4629)


Automatic classification of dialogues between clients and a ser vice center needs a preliminary dialogue parameterization. Such a pa rameterization is usually faced with essential difficulties when we deal with politeness, competence, satisfaction, and other similar characteris tics of clients. In the paper, we show how to avoid these difficulties using empirical formulae based on lexical-grammatical properties of a text. Such formulae are trained on given set of examples, which are evaluated manually by an expert(s) and the best formula is selected by the Ivakhnenko Method of Model Self-Organization. We test the suggested methodology on the real set of dialogues from Barcelona railway directory inquiries for estimation of passenger’s politeness.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Alexandrov, M., Sanchis, E., Rosso, P.: Cluster analysis of railway directory inquire dialogs. In: Matoušek, V., Mautner, P., Pavelka, T. (eds.) TSD 2005. LNCS (LNAI), vol. 3658, pp. 385–392. Springer, Heidelberg (2005)Google Scholar
  2. 2.
    Alexandris, C., Fotinea, S.E.: Discourse particles: Indicators of positive and non-positive politeness in the discourse structure of dialog systems for modern greek. Intern. J. for Language Data Processing Sprache Datenverarbeitung, 1-2, 19–29 (2004)Google Scholar
  3. 3.
    Ardissono, L., Boella, C., Lesmo, L.: Indirect speech acts and politeness: A computational approach. In: Proceedings of the 17th Cognitive Science Conference, pp. 113–117 (1995)Google Scholar
  4. 4.
    Blanco, X., Alexandrov, M., Gelbukh, A.: Modified Makagonov’s Method for Testing Word Similarity and its Application to Constructing Word Frequency List. In: Advances in Natural Language Processing, Mexico, pp. 27–36 (2006)Google Scholar
  5. 5.
    Bonafonte, A.: Desarrollo de un sistema de dialogo oral en dominios restringidos (in Spanish). In: I Jornadas en Tecnologia de Habla (2000)Google Scholar
  6. 6.
    Gelbukh, A., Sidorov, G.: Approach to construction of automatic morphological analysis systems for inflective languages with little effort. In: Gelbukh, A. (ed.) CICLing 2003. LNCS, vol. 2588, pp. 215–220. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  7. 7.
    Ivakhnenko, A.: Inductive method of model self-organization of complex systems (in Russian), Tehnika Publ. (1982)Google Scholar
  8. 8.
    Ivakhnenko, A.: Manual on typical algorithms of modeling (in Russian). Tehnika Publ. (1980)Google Scholar
  9. 9.
    Makagonov, P., Alexandrov, M.: Constructing empirical formulas for testing word similarity by the inductive method of model self-organization. In: Advances in Natural Language Processing. Mexico, pp. 239–247 (2004)Google Scholar
  10. 10.
    NooJ description:
  11. 11.
    Ponomareva, N., Blanco, X.: Example-based empirical formula for politeness estimation in dialog processing. In: Proceedings of 10th Intern. Workshop on NooJ applications (to be published, 2007)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Mikhail Alexandrov
    • 1
  • Xavier Blanco
    • 1
  • Natalia Ponomareva
    • 2
  • Paolo Rosso
    • 2
  1. 1.Universidad Autonoma de BarcelonaSpain
  2. 2.Universidad Politecnica de ValenciaSpain

Personalised recommendations