Skip to main content

Automatic Synthesis of Practical Passive Filters Using Clonal Selection Principle-Based Gene Expression Programming

  • Conference paper
Evolvable Systems: From Biology to Hardware (ICES 2007)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4684))

Included in the following conference series:

Abstract

This paper proposes a new method to synthesize practical passive filter using Clonal Selection principle-based Gene Expression Programming and binary tree representation. The circuit encoding of this method is simple and efficient. Using this method, both the circuit topology and component parameters can be evolved simultaneously. Discrete component value is used in the algorithm for practical implementation. Two kinds of filters are experimented to verify the excellence of our method, experimental results show that this approach can generate passive RLC filters quickly and effectively.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Horrocks, D.H., Spittle, M.C.: Component Value Selection for Active Filter Using Genetic Algorithms. In: Proc. IEE/IEEE Workshop on Natural Algorithms in Signal Processing, Chelmsford, UK, vol. 1, pp. 13/1–13/6. IEEE Computer Society Press, Los Alamitos (1993)

    Google Scholar 

  2. Horrocks, D.H., Khalifa, Y.M.A.: Genetic Algorithm Design of Electronic Analogue Cir-cuits Including Parasitic Effects. In: WSC1. Proc. First On-line Workshop on Soft Computing, pp. 71–78. Nagoya University, Japan (1996)

    Google Scholar 

  3. Kalinli, A.: Component Value Selection for Active Filters Using Parallel Tabu Search Algorithm. AEU International Journal of Electronics and Communications 60, 85–92 (2006)

    Article  Google Scholar 

  4. Grimbleby, J.B.: Automatic Analogue Network Synthesis using Genetic Algorithms. In: Proc. 1st Int. Conf. Genetic Algorithms in Engineering Systems: Innovations and Applications, pp. 53–58 (1995)

    Google Scholar 

  5. Koza, J.R., Bennett III, F.H., Andre, D., Keane, M.A., Dunlap, F.: Automated Synthesis of Analog Electrical Circuits by Means of Genetic Programming. IEEE Trans. on Evolutionary Computation 1(2), 109–128 (1997)

    Article  Google Scholar 

  6. Koza, J.R.: Genetic Programming: On the Programming of Computers by Means of Natural Selection. MIT Press, Cambridge, MA (1992)

    MATH  Google Scholar 

  7. Lohn, J.D., Colombano, S.P.: A Circuit Representation Technique for Automated Circuit Design. IEEE Trans. on Evolutionary Computation 3(3), 205–219 (1999)

    Article  Google Scholar 

  8. Lohn, J.D., Colombano, S.P.: Automated Analog Circuit Synthesis using a Linear Representation. In: Sipper, M., Mange, D., Pérez-Uribe, A. (eds.) ICES 1998. LNCS, vol. 1478, pp. 125–133. Springer, Heidelberg (1998)

    Chapter  Google Scholar 

  9. Chang, S.J., Hou, H.S., Su, Y.K.: Automated Passive Filter Synthesis Using a Novel Tree Representation and Genetic Programming. IEEE Trans. on Evolutionary Computation 10(1), 93–100 (2006)

    Article  Google Scholar 

  10. Hou, H.S., Chang, S.J., Su, Y.K.: Practical Passive Filter Synthesis Using Genetic Programming. IEICE Trans. Electron E88-C(6), 1180–1185 (2005)

    Article  Google Scholar 

  11. Ferreira, C.: Gene Expression Programming: a New Adaptive Algorithm for Solving Problems. Complex Systems 13(2), 87–129 (2001)

    MathSciNet  Google Scholar 

  12. Ferreira, C.: Gene Expression Programming: Mathematical Modeling by an Artificial Intelligence. Springer, Heidelberg (2006)

    MATH  Google Scholar 

  13. de Castro, L.N., Von Zuben, F.J.: Learning and Optimization Using the Clonal Selection Principle. IEEE Trans. on Evolutionary Computation, Special Issue on Artificial Immune Systems 6(3), 239–251 (2002)

    Google Scholar 

  14. de Castro, L.N., Von Zuben, F.J.: The Clonal Selection Algorithm with engineering applications. In: GECCO 2000, Workshop on Artificial Immune Systems and Their Applications, pp. 36–37 (2000)

    Google Scholar 

  15. Gan, Z.H, Yang, Z.K, Li, G.B, Jiang, M.: Automatic Modeling of Complex Functions with Clonal Selection-based Gene Expression Programming. In: ICNC 2007. The 3rd International Conference on Natural Computation (submitted, 2007)

    Google Scholar 

  16. Sedra, A.S., Brackett, P.O.: Filter Theory and Design: Active and Passive. Matrix Publishers, Inc. (1978)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Lishan Kang Yong Liu Sanyou Zeng

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Gan, Z., Yang, Z., Li, G., Jiang, M. (2007). Automatic Synthesis of Practical Passive Filters Using Clonal Selection Principle-Based Gene Expression Programming. In: Kang, L., Liu, Y., Zeng, S. (eds) Evolvable Systems: From Biology to Hardware. ICES 2007. Lecture Notes in Computer Science, vol 4684. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-74626-3_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-74626-3_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-74625-6

  • Online ISBN: 978-3-540-74626-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics