Advertisement

Towards an Automatic Analysis of Web Service Security

  • Yannick Chevalier
  • Denis Lugiez
  • Michaël Rusinowitch
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4720)

Abstract

Web services send and receive messages in XML syntax with some parts hashed, encrypted or signed, according to the WS-Security standard. In this paper we introduce a model to formally describe the protocols that underly these services, their security properties and the rewriting attacks they might be subject to. Unlike other protocol models (in symbolic analysis) ours can handle non-deterministic receive/send actions and unordered sequence of XML nodes. Then to detect the attacks we have to consider the services as combining multiset operators and cryptographic ones and we have to solve specific satisfiability problems in the combined theory. By non-trivial extension of the combination techniques of [3] we obtain a decision procedure for insecurity of Web services with messages built using encryption, signature, and other cryptographic primitives. This combination technique allows one to decide insecurity in a modular way by reducing the associated constraint solving problems to problems in simpler theories.

Keywords

Security Web services verification cryptographic protocols combination of decision procedures equational theories rewriting 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bhargavan, K., Fournet, C., Gordon, A.D., Pucella, R.: Tulafale: A security tool for web services. In: de Boer, F.S., Bonsangue, M.M., Graf, S., de Roever, W.-P. (eds.) FMCO 2003. LNCS, vol. 3188, pp. 197–222. Springer, Heidelberg (2004)Google Scholar
  2. 2.
    Cervesato, I., Durgin, N.A., Lincoln, P., Mitchell, J.C., Scedrov, A.: A meta-notation for protocol analysis. In: CSFW, pp. 55–69 (1999)Google Scholar
  3. 3.
    Chevalier, Y., Rusinowitch, M.: Combining intruder theories. In: Caires, L., Italiano, G.F., Monteiro, L., Palamidessi, C., Yung, M. (eds.) ICALP 2005. LNCS, vol. 3580, pp. 639–651. Springer, Heidelberg (2005)Google Scholar
  4. 4.
    Basin, D.A., Mödersheim, S., Viganò, L.: Algebraic intruder deductions. In: Sutcliffe, G., Voronkov, A. (eds.) LPAR 2005. LNCS (LNAI), vol. 3835, pp. 549–564. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  5. 5.
    Comon-Lundh, H., Delaune, S.: The finite variant property: How to get rid of some algebraic properties. In: Giesl, J. (ed.) RTA 2005. LNCS, vol. 3467, Springer, Heidelberg (2005)Google Scholar
  6. 6.
    Goubault-Larrecq, J., Roger, M., Verma, K.N.: Abstraction and resolution modulo ac: How to verify diffie-hellman-like protocols automatically. J. Log. Algebr. Program. 64(2), 219–251 (2005)zbMATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Baader, F., Schulz, K.U.: Unification in the union of disjoint equational theories. J. Symb. Comput. 21(2), 211–243 (1996)zbMATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Thayer, F.J., Herzog, J.C., Guttman, J.D.: Strand spaces: Proving security protocols correct. Journal of Computer Security 7(1) (1999)Google Scholar
  9. 9.
    Chevalier, Y., Lugiez, D., Rusinowitch, M.: Towards an Automatic Analysis of Web Service Security. Technical report, INRIA (2007), http://www.inria.fr/rrrt/liste-2007.html
  10. 10.
    Dolev, D., Yao, A.: On the Security of Public-Key Protocols. IEEE Transactions on Information Theory 2(29) (1983)Google Scholar
  11. 11.
    Weidenbach, C.: Towards an automatic analysis of security protocols in first-order logic. In: Ganzinger, H. (ed.) CADE 1999. LNCS (LNAI), vol. 1632, pp. 314–328. Springer, Heidelberg (1999)Google Scholar
  12. 12.
    Dershowitz, N., Jouannaud, J.P.: Rewrite systems. In: Handbook of Theoretical Computer Science, vol. B, pp. 243–320. Elsevier, Amsterdam (1990)Google Scholar
  13. 13.
    Baader, F., Nipkow, T.: Term Rewriting and All That. Cambridge University Press, Cambridge (1998)Google Scholar
  14. 14.
    Millen, J., Shmatikov, V.: Symbolic protocol analysis with an abelian group operator or Diffie-Hellman exponentiation. Journal of Computer Security (2005)Google Scholar
  15. 15.
    Chevalier, Y., Kuesters, R., Rusinowitch, M., Turuani, M.:An NP Decision Procedure for Protocol Insecurity with XOR. In: Proceedings of the Logic In Computer Science Conference, LICS 2003 (2003)Google Scholar
  16. 16.
    Chevalier, Y., Kourjieh, M.: A symbolic intruder model for hash-collision attacks. In: 11th Annual Asian Computing Science Conference. LNCS, Springer, Heidelberg (2006), ftp://ftp.irit.fr/IRIT/LILAC/main.pdf Google Scholar
  17. 17.
    Bursuc, S., Comon-Lundh, H., Delaune, S.: Associative-commutative deducibility constraints. In: Thomas, W., Weil, P. (eds.) STACS 2007. LNCS, vol. 4393, pp. 634–645. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  18. 18.
    Rusinowitch, M., Turuani, M.: Protocol insecurity with finite number of sessions is NP-complete. In: Proc.14th IEEE Computer Security Foundations Workshop, Cape Breton, Nova Scotia (2001)Google Scholar
  19. 19.
    Armando, A., et al.: The AVISPA tool for the automated validation of internet security protocols and applications. In: Etessami, K., Rajamani, S.K. (eds.) CAV 2005. LNCS, vol. 3576, pp. 281–285. Springer, Heidelberg (2005)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Yannick Chevalier
    • 1
  • Denis Lugiez
    • 2
  • Michaël Rusinowitch
    • 3
  1. 1.IRIT, Team LiLac, Université de ToulouseFrance
  2. 2.LIF, CNRS, Aix-Marseille UniversitéFrance
  3. 3.LORIA-INRIA-LorraineFrance

Personalised recommendations