Termination of Innermost Context-Sensitive Rewriting Using Dependency Pairs

  • Beatriz Alarcón
  • Salvador Lucas
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4720)


Innermost context-sensitive rewriting has been proved useful for modeling computations of programs of algebraic languages like Maude, OBJ, etc. Furthermore, innermost termination of rewriting is often easier to prove than termination. Thus, under appropriate conditions, a useful strategy for proving termination of rewriting is trying to prove termination of innermost rewriting. This phenomenon has also been investigated for context-sensitive rewriting (CSR). Up to now, only few transformations have been proposed and used to prove termination of innermost CSR. In this paper, we investigate direct methods for proving termination of innermost CSR. We adapt the recently introduced context-sensitive dependency pairs approach to innermost CSR and show that they can be advantageously used for proving termination of innermost CSR. We have implemented them as part of the termination tool mu-term.


Dependency Graph Usable Rule Termination Proof Dependency Pair Reduction Pair 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Alarcón, B., Gutiérrez, R., Lucas, S.: Context-Sensitive Dependency Pairs. In: Arun-Kumar, S., Garg, N. (eds.) FSTTCS 2006. LNCS, vol. 4337, pp. 297–308. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  2. 2.
    Alarcón, B., Gutiérrez, R., Lucas, S.: Improving the context-sensitive dependency graph. Electronic Notes in Theoretical Computer Science (to appear, 2007)Google Scholar
  3. 3.
    Arts, T., Giesl, J.: Termination of Term Rewriting Using Dependency Pairs. Theoretical Computer Science 236, 133–178 (2000)zbMATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Borralleras, C.: Ordering-based methods for proving termination automatically. PhD Thesis, Departament de Llenguatges i Sistemes Informàtics, Universitat Politècnica de Catalunya (May 2003)Google Scholar
  5. 5.
    Giesl, J., Arts, T., Ohlebusch, E.: Modular Termination Proofs for Rewriting Using Dependency Pairs. Journal of Symbolic Computation 34(1), 21–58 (2002)CrossRefMathSciNetGoogle Scholar
  6. 6.
    Giesl, J., Middeldorp, A.: Innermost termination of context-sensitive rewriting. Aachener Informatik-Berichte (AIBs) 2002-04, RWTH Aachen (2002)Google Scholar
  7. 7.
    Giesl, J., Middeldorp, A.: Innermost termination of context-sensitive rewriting. In: Ito, M., Toyama, M. (eds.) DLT 2002. LNCS, vol. 2450, pp. 231–244. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  8. 8.
    Giesl, J., Middeldorp, A.: Transformation techniques for context-sensitive rewrite systems. Journal of Functional Programming 14(4), 379–427 (2004)zbMATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Giesl, J., Schneider-Kamp, P., Thiemann, R.: AProVE 1.2: Automatic Termination Proofs in the Dependency Pair Framework. In: Furbach, U., Shankar, N. (eds.) IJCAR 2006. LNCS (LNAI), vol. 4130, pp. 281–286. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  10. 10.
    Gramlich, B.: Abstract Relations between Restricted Termination and Confluence Properties of Rewrite Systems. Fundamenta Informaticae 24, 3–23 (1995)zbMATHMathSciNetGoogle Scholar
  11. 11.
    Gramlich, B.: On Proving Termination by Innermost Termination. In: Ganzinger, H. (ed.) RTA 1996. LNCS, vol. 1103, pp. 93–107. Springer, Heidelberg (1996)Google Scholar
  12. 12.
    Gramlich, B., Lucas, S.: Modular Termination of Context-Sensitive Rewriting. In: Proc. of PPDP 2002, pp. 50–61. ACM Press, New York (2002)CrossRefGoogle Scholar
  13. 13.
    Hirokawa, N., Middeldorp, A.: Dependency Pairs Revisited. In: van Oostrom, V. (ed.) RTA 2004. LNCS, vol. 3091, pp. 249–268. Springer, Heidelberg (2004)Google Scholar
  14. 14.
    Hirokawa, N., Middeldorp, A.: Automating the dependency pair method. Information and Computation 199, 172–199 (2005)zbMATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Lucas, S.: Context-sensitive computations in functional and functional logic programs. Journal of Functional and Logic Programming 1998(1), 1–61 (1998)Google Scholar
  16. 16.
    Lucas, S.: Termination of Rewriting With Strategy Annotations. In: Nieuwenhuis, R., Voronkov, A. (eds.) LPAR 2001. LNCS (LNAI), vol. 2250, pp. 669–684. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  17. 17.
    Lucas, S.: Termination of on-demand rewriting and termination of OBJ programs. In: Proc. of PPDP 2001, pp. 82–93. ACM Press, New York (2001)CrossRefGoogle Scholar
  18. 18.
    Lucas, S.: Context-sensitive rewriting strategies. Information and Computation 178(1), 293–343 (2002)MathSciNetGoogle Scholar
  19. 19.
    Lucas, S.: MU-TERM: A Tool for Proving Termination of Context-Sensitive Rewriting. In: van Oostrom, V. (ed.) RTA 2004. LNCS, vol. 3091, pp. 200–209. Springer, Heidelberg (2004)Google Scholar
  20. 20.
    Lucas, S.: Proving termination of context-sensitive rewriting by transformation. Information and Computation 204(12), 1782–1846 (2006)zbMATHCrossRefMathSciNetGoogle Scholar
  21. 21.
    Ohlebusch, E.: Advanced Topics in Term Rewriting. Springer, Heidelberg (2002)zbMATHGoogle Scholar
  22. 22.
    TeReSe: Term Rewriting Systems. Cambridge University Press, Cambridge (2003)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Beatriz Alarcón
    • 1
  • Salvador Lucas
    • 1
  1. 1.DSIC, Universidad Politécnica de ValenciaSpain

Personalised recommendations