Advertisement

Proving Termination Using Recursive Path Orders and SAT Solving

  • Peter Schneider-Kamp
  • René Thiemann
  • Elena Annov
  • Michael Codish
  • Jürgen Giesl
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4720)

Abstract

We introduce a propositional encoding of the recursive path order with status (RPO). RPO is a combination of a multiset path order and a lexicographic path order which considers permutations of the arguments in the lexicographic comparison. Our encoding allows us to apply SAT solvers in order to determine whether a given term rewrite system is RPO-terminating. Furthermore, to apply RPO within the dependency pair framework, we combined our novel encoding for RPO with an existing encoding for argument filters. We implemented our contributions in the termination prover AProVE. Our experiments show that due to our encoding, combining termination provers with SAT solvers improves the performance of RPO-implementations by orders of magnitude.

Keywords

Function Symbol Propositional Variable Propositional Formula Satisfying Assignment Termination Proof 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Arts, T., Giesl, J.: Termination of term rewriting using dependency pairs. Theoretical Computer Science 236, 133–178 (2000)zbMATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Baader, F., Nipkow, T.: Term Rewriting and All That. Cambridge University Press, Cambridge (1998)Google Scholar
  3. 3.
    Codish, M., Lagoon, V., Stuckey, P.J.: Solving partial order constraints for LPO termination. In: Pfenning, F. (ed.) RTA 2006. LNCS, vol. 4098, pp. 4–18. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  4. 4.
    Codish, M., Schneider-Kamp, P., Lagoon, V., Thiemann, R., Giesl, J.: SAT solving for argument filterings. In: Hermann, M., Voronkov, A. (eds.) LPAR 2006. LNCS (LNAI), vol. 4246, pp. 30–44. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  5. 5.
    Comon, H., Treinen, R.: Ordering constraints on trees. In: Tison, S. (ed.) CAAP 1994. LNCS, vol. 787, pp. 1–14. Springer, Heidelberg (1994)CrossRefGoogle Scholar
  6. 6.
    Dershowitz, N.: Orderings for term-rewriting systems. Theoretical Computer Science 17, 279–301 (1982)zbMATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Eén, N., Sörensson, N.: An Extensible SAT-solver. In: Giunchiglia, E., Tacchella, A. (eds.) SAT 2003. LNCS, vol. 2919, pp. 502–518. Springer, Heidelberg (2004)Google Scholar
  8. 8.
    Endrullis, J., Waldmann, J., Zantema, H.: Matrix interpretations for proving termination of term rewriting. In: Furbach, U., Shankar, N. (eds.) IJCAR 2006. LNCS (LNAI), vol. 4130, pp. 574–588. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  9. 9.
    Fuhs, C., Giesl, J., Middeldorp, A., Schneider-Kamp, P., Thiemann, R., Zankl, H.: SAT solving for termination analysis with polynomial interpretations. In: Marques-Silva, J., Sakallah, K.A. (eds.) Proc. SAT 2007. LNCS, vol. 4501, pp. 340–354. Springer, Heidelberg (2007)Google Scholar
  10. 10.
    Giesl, J., Thiemann, R., Schneider-Kamp, P.: The dependency pair framework: Combining techniques for automated termination proofs. In: Baader, F., Voronkov, A. (eds.) LPAR 2004. LNCS (LNAI), vol. 3452, pp. 301–331. Springer, Heidelberg (2005)Google Scholar
  11. 11.
    Giesl, J., Schneider-Kamp, P., Thiemann, R.: AProVE 1.2: Automatic termination proofs in the dependency pair framework. In: Furbach, U., Shankar, N. (eds.) IJCAR 2006. LNCS (LNAI), vol. 4130, pp. 281–286. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  12. 12.
    Giesl, J., Thiemann, R., Schneider-Kamp, P., Falke, S.: Mechanizing and improving dependency pairs. Journal of Automated Reasoning 37(3), 155–203 (2006)zbMATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Hirokawa, N., Middeldorp, A.: Tyrolean termination tool: Techniques and features. Information and Computation 205(4), 474–511 (2007)zbMATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Hofbauer, D., Waldmann, J.: Termination of string rewriting with matrix interpretations. In: Pfenning, F. (ed.) RTA 2006. LNCS, vol. 4098, pp. 328–342. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  15. 15.
    Kamin, S., Lévy, J.J.: Two generalizations of the recursive path ordering. Unpublished Manuscript, University of Illinois, IL, USA (1980)Google Scholar
  16. 16.
    Kurihara, M., Kondo, H.: Efficient BDD encodings for partial order constraints with application to expert systems in software verification. In: Orchard, B., Yang, C., Ali, M. (eds.) IEA/AIE 2004. LNCS (LNAI), vol. 3029, pp. 827–837. Springer, Heidelberg (2004)Google Scholar
  17. 17.
    Kusakari, K., Nakamura, M., Toyama, Y.: Argument filtering transformation. In: Nadathur, G. (ed.) PPDP 1999. LNCS, vol. 1702, pp. 47–61. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  18. 18.
    Lescanne, P.: Computer experiments with the REVE term rewriting system generator. In: Demers, A., Teitelbaum, T. (eds.) Proc. POPL 1983, pp. 99–108 (1983)Google Scholar
  19. 19.
    Marché, C., Zantema, H.: The termination competition. In: Baader, F. (ed.) Proc. RTA 2007. LNCS, vol. 4533, pp. 303–313. Springer, Heidelberg (2007)Google Scholar
  20. 20.
    SAT4J satisfiability library for Java, http://www.sat4j.org
  21. 21.
    The termination problem data base, http://www.lri.fr/~marche/tpdb/
  22. 22.
    Tseitin, G.: On the complexity of derivation in propositional calculus. In: Studies in Constructive Mathematics and Mathematical Logic, pp. 115–125 (1968)Google Scholar
  23. 23.
    Zankl, H., Hirokawa, N., Middeldorp, A.: Constraints for argument filterings. In: van Leeuwen, J., Italiano, G.F., van der Hoek, W., Meinel, C., Sack, H., Plášil, F. (eds.) SOFSEM 2007. LNCS, vol. 4362, pp. 579–590. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  24. 24.
    Zankl, H., Middeldorp, A.: Satisfying KBO constraints. In: Baader, F. (ed.) RTA 2007. LNCS, vol. 4533, pp. 389–403. Springer, Heidelberg (2007)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Peter Schneider-Kamp
    • 1
  • René Thiemann
    • 1
  • Elena Annov
    • 2
  • Michael Codish
    • 2
  • Jürgen Giesl
    • 1
  1. 1.LuFG Informatik 2, RWTH AachenGermany
  2. 2.Department of Computer Science, Ben-Gurion UniversityIsrael

Personalised recommendations