Languages Modulo Normalization

  • Hitoshi Ohsaki
  • Hiroyuki Seki
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4720)


We propose a new class of tree automata, called tree automata with normalization (TAN). This framework is obtained by extending equational tree automata, and improves the results of the previous work, such as: recognized tree languages modulo the idempotency f(x,x) = x are closed under complement, which are not closed in equational tree automata, besides we do not lose important decidability. In the paper, first we investigate the closure properties of this class for Boolean operations and the decidability relative to the equational tree automata. Next we consider the relationship to other automata frameworks, in particular, hedge automata, which is a class of unranked tree automata. Hedge automata have been recognized in the XML database community as a theoretical basis for modeling the manipulation of semi-structured data. Through the observation about transformations from hedge automata to tree automata, we discuss advantages in the expressiveness and complexity of TAN. As an application of our framework, we show an example that XML schema with constraints that can not be dealt with by other tree automata frameworks is manipulated by TAN.


tree automata modulo axioms equational rewriting Boolean closedness decidability regularity hedge automata and XML schema 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Baader, F., Nipkow, T.: Term Rewriting and All That. Cambridge University Press, Cambridge (1998)Google Scholar
  2. 2.
    Carme, J., Niehren, J., Tommasi, M.: Querying Unranked Trees with Stepwise Tree Automata. In: van Oostrom, V. (ed.) RTA 2004. LNCS, vol. 3091, pp. 235–236. Springer, Heidelberg (2004)Google Scholar
  3. 3.
    Comon, H., Dauchet, M., Gilleron, R., Jacquemard, F., Lugiez, D., Tison, S., Tommasi, M.: Tree Automata Techniques and Applications, draft (2005), available at
  4. 4.
    Comon, H., Jacquemard, F.: Ground Reducibility is EXPTIME-Complete, Information and Computation, vol. 187(1), pp. 123–153. Elsevier, Amsterdam (2003)Google Scholar
  5. 5.
    Contejean, E., Marché, C., Monate, B., Urbain, X.: The CiME System: Version 2.02, Software and the document (2004), available at
  6. 6.
    Dal Zilio, S., Lugiez, D.: XML Schema, Tree Logic and Sheaves Automata. In: Applicable Algebra in Engineering, Communication and Computing, vol. 17(5), pp. 337–377. Springer, Heidelberg (2006)Google Scholar
  7. 7.
    Engelfriet, J., Maneth, S.: A Comparison of Pebble Tree Transducers with Macro Tree Transducers. In: Acta Informatica, vol. 39, pp. 613–698. Springer, Heidelberg (2003)Google Scholar
  8. 8.
    Feuillade, G., Genet, T., Viet Triem Tong, V.: Reachability Analysis over Term Rewriting Systems. Journal of Automated Reasoning 33, 341–383 (2004)zbMATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Hendrix, J., Meseguer, J., Ohsaki, H.: A Sufficient Completeness Checker for Linear Order-Sorted Specifications Modulo Axioms. In: Furbach, U., Shankar, N. (eds.) IJCAR 2006. LNCS (LNAI), vol. 4130, pp. 151–155. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  10. 10.
    Hendrix, J., Ohsaki, H., Viswanathan, M.: Propositional Tree Automata. In: Pfenning, F. (ed.) RTA 2006. LNCS, vol. 4098, pp. 50–65. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  11. 11.
    Hosoya, H., Vouillon, J., Pierce, B.C.: Regular Expression Types for XML. In: Proc. of 5th ICFP, Montreal (Canada), vol. 35(9), pp. 11–22. ACM, New York (2000)CrossRefGoogle Scholar
  12. 12.
    Klarlund, N., Møller, A.: MONA Version 1.4 User Manual, BRICS Notes Series NS-01-1, Department of Computer Science, University of Aarhus (2001)Google Scholar
  13. 13.
    Kutsia, T.: Solving Equations Involving Sequence Variables and Sequence Functions. In: Buchberger, B., Campbell, J.A. (eds.) AISC 2004. LNCS (LNAI), vol. 3249, pp. 157–170. Springer, Heidelberg (2004)Google Scholar
  14. 14.
    Lugiez, D.: Multitree Automata That Count. In: Theoretical Computer Science, vol. 333(1–2), pp. 225–263. Elsevier, Amsterdam (2005)Google Scholar
  15. 15.
    Maneth, S., Perst, T., Seidl, H.: XML Type Checking in Polynomial Time. In: Schwentick, T., Suciu, D. (eds.) ICDT 2007. LNCS, vol. 4353, pp. 254–268. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  16. 16.
    Marché, C.: Normalized Rewriting: An Alternative to Rewriting Modulo a Set of Equations. Journal of Symbolic Computation 21(3), 253–288 (1996)zbMATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    Milo, T., Suciu, D., Vianu, V.: Typechecking for XML Transformers. In: Proc. of 19th PODS, Dallas (Texas), pp. 11–22. ACM, New York (2000)Google Scholar
  18. 18.
    Murata, M.: Hedge Automata: A Formal Model for XML Schemata, draft (2000), available at
  19. 19.
    Murata, M., Prescod, P.: SGML/XML and Forest/Hedge Automata Theory, Online Resource for Markup Language Technologies, Cover Pages, OASIS (May 2001), Online document available at
  20. 20.
    Ohsaki, H., Seki, H.: Languages Modulo Normalization, draft (2007) Available at
  21. 21.
    Ohsaki, H., Takai, T.: ACTAS: A System Design for Associative and Commutative Tree Automata Theory. In: Proc. of 5th RULE, Aachen (Germany), vol. ENTCS124, pp. 97–111. Elsevier, Amsterdam (2005)Google Scholar
  22. 22.
    Ohsaki, H., Takai, T.: Decidability and Closure Properties of Equational Tree Languages. In: Tison, S. (ed.) RTA 2002. LNCS, vol. 2378, pp. 114–128. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  23. 23.
    Ohsaki, H.: Beyond Regularity: Equational Tree Automata for Associative and Commutative Theories. In: Fribourg, L. (ed.) CSL 2001 and EACSL 2001. LNCS, vol. 2142, pp. 539–553. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  24. 24.
    Parikh, R.: On Context-Free Languages. JACM 13(4), 570–581 (1966)zbMATHCrossRefMathSciNetGoogle Scholar
  25. 25.
    Seidl, H., Schwentick, T., Muscholl, A.: Numerical Document Queries. In: Proc. of 22nd PODS, San Diego (California), pp. 155–166. ACM Press, New York (2003)Google Scholar
  26. 26.
    Takai, T., Kaji, Y., Seki, H.: Right-Linear Finite Path Overlapping Term Rewriting Systems Effectively Preserve Recognizability. In: Bachmair, L. (ed.) RTA 2000. LNCS, vol. 1833, pp. 246–260. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  27. 27.
    Thatcher, J.W.: Characterizing Derivation Trees of Context-Free Grammars Through a Generalization of Automata Theory. Journal of Computer and System Sciences 1(4), 317–322 (1967)zbMATHMathSciNetGoogle Scholar
  28. 28.
    Verma, K.N.: Two-Way Equational Tree Automata for AC-Like Theories: Decidability and Closure Properties. In: Nieuwenhuis, R. (ed.) RTA 2003. LNCS, vol. 2706, pp. 180–197. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  29. 29.
    Verma, K.N.: On Closure under Complementation of Equational Tree Automata for Theories Extending AC. In: Vardi, M.Y., Voronkov, A. (eds.) LPAR 2003. LNCS, vol. 2850, pp. 183–197. Springer, Heidelberg (2003)Google Scholar
  30. 30.
    Extensible Markup Language (XML) Schema 1.0, 3rd edn., W3C (2004) Document available at

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Hitoshi Ohsaki
    • 1
  • Hiroyuki Seki
    • 2
  1. 1.National Institute of Advanced Industrial Science and Technology 
  2. 2.Nara Institute of Science and Technology 

Personalised recommendations