Skip to main content

Coinductive Logic Programming and Its Applications

  • Conference paper
Logic Programming (ICLP 2007)

Part of the book series: Lecture Notes in Computer Science ((LNPSE,volume 4670))

Included in the following conference series:

Abstract

Coinduction has recently been introduced as a powerful technique for reasoning about unfounded sets, unbounded structures, and interactive computations. Where induction corresponds to least fixed point semantics, coinduction corresponds to greatest fixed point semantics. In this paper we discuss the introduction of coinduction into logic programming. We discuss applications of coinductive logic programming to verification and model checking, lazy evaluation, concurrent logic programming and non-monotonic reasoning.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Alur, R., Dill, D.L.: A theory of timed automata. TCS 126, 183–235 (1994)

    Article  MATH  Google Scholar 

  2. Bansal, A.: Towards next generation logic programming systems. Ph.D. thesis forthcoming

    Google Scholar 

  3. Baral, C.: Knowledge Representation, Reasoning and Declarative Problem Solving. Cambridge University Press, Cambridge (2003)

    MATH  Google Scholar 

  4. Barwise, J., Moss, L.: Vicious Circles: On the Mathematics of Non-Wellfounded Phenomena. CSLI Publications, Stanford (1996)

    MATH  Google Scholar 

  5. Gelfond, M., Lifschitz, V.: The stable model semantics for logic programming. In: Kowalski, R., Bowen, K. (eds.) Logic Programming: Proc. of the Fifth International Conference and Symposium, pp. 1070–1080 (1988)

    Google Scholar 

  6. Goldin, D., Keil, D.: Interaction, Evolution and Intelligence. In: Proc. Congress on Evolutionary Computing (2001)

    Google Scholar 

  7. Goguen, J., Lin, K.: Behavioral Verification of Distributed Concurrent Systems with BOBJ. In: Proc. Conference on Quality Software, pp. 216–235. IEEE Press, Los Alamitos (2003)

    Chapter  Google Scholar 

  8. Gordon, A.: A Tutorial on Co-induction and Functional Programming. In: Springer Workshops in Computing (Functional Programming), pp. 78–95. Springer, Heidelberg (1995)

    Google Scholar 

  9. Gupta, G., Pontelli, E.: Constraint-based Specification and Verification of Real-time Systems. In: Proc. IEEE Real-time Symposium 1997, pp. 230–239

    Google Scholar 

  10. Jacobs, B.: Introduction to Coalgebra: Towards Mathematics of States and Observation. Draft manuscript

    Google Scholar 

  11. Liu, X., Ramakrishnan, C.R., Smolka, S.A.: Fully local and efficient evaluation of alternating fixed-points. In: Steffen, B. (ed.) ETAPS 1998 and TACAS 1998. LNCS, vol. 1384, Springer, Heidelberg (1998)

    Chapter  Google Scholar 

  12. Lloyd, J.W.: Foundations of Logic Programming, 2nd edn. Springer, Heidelberg (1987)

    MATH  Google Scholar 

  13. Mallya, A.: Multivalued Deductive Multi-valued Model Checking. Ph.d. thesis. UT Dallas (2006)

    Google Scholar 

  14. Marek, W., Truszczynski, M.: Stable models and an alternative logic programming paradigm. In: the Logic Programming Paradigm: a 25-Year Perspective, pp. 375–398. Springer, Heidelberg (1999)

    Google Scholar 

  15. Min, R.: Coinduction in monotonic and non-monotonic reasoning. Ph.D. thesis forthcoming

    Google Scholar 

  16. Pierce, B.: Types and Programming Languages. MIT Press, Cambridge, MA (2002)

    Google Scholar 

  17. Podelski, A., Rybalchenko, A.: Transition Predicate Abstraction and Fair Termination. In: POPL 2005, pp. 132–144. ACM Press, New York (2005)

    Chapter  Google Scholar 

  18. Ramakrishna, Y.S., et al.: Efficient Model Checking Using Tabled Resolution. In: Grumberg, O. (ed.) CAV 1997. LNCS, vol. 1254, pp. 143–154. Springer, Heidelberg (1997)

    Google Scholar 

  19. Costa, V.S., Rocha, R.: The YAP Prolog System

    Google Scholar 

  20. Schuppan, V., Biere, A.: Liveness Checking as Safety Checking for Infinite State Spaces. ENTCS 149(1), 79–96 (2006)

    Google Scholar 

  21. Simon, L.: Extending Logic Programming with Coinduction. Ph.D. Thesis (2006)

    Google Scholar 

  22. Simon, L., Mallya, A., Bansal, A., Gupta, G.: Coinductive Logic Programming. In: Etalle, S., Truszczyński, M. (eds.) ICLP 2006. LNCS, vol. 4079, pp. 330–344. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  23. Simon, L., Bansal, A., Mallya, A., Gupta, G.: Co-Logic Programming (to appear). In: Arge, Cachin, Jurdzinski, Tarlecki (eds.) ICALP 2007, vol. 4596, Springer, Heidelberg (to appear, 2007)

    Google Scholar 

  24. Vardi, M.: Verification of Concurrent Programs: The Automata-Theoretic Framework. In: LICS 1987, pp. 167–176. IEEE, Los Alamitos (1987)

    Google Scholar 

  25. Wegner, P., Goldin, D.: Mathematical models of interactive computing. Brown University Technical Report CS 99-13 (1999)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Véronica Dahl Ilkka Niemelä

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Gupta, G., Bansal, A., Min, R., Simon, L., Mallya, A. (2007). Coinductive Logic Programming and Its Applications. In: Dahl, V., Niemelä, I. (eds) Logic Programming. ICLP 2007. Lecture Notes in Computer Science, vol 4670. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-74610-2_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-74610-2_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-74608-9

  • Online ISBN: 978-3-540-74610-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics