Skip to main content

A Universal Reversible Turing Machine

  • Conference paper
Machines, Computations, and Universality (MCU 2007)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4664))

Included in the following conference series:

Abstract

A reversible Turing machines is a computing model with a “backward deterministic” property, which is closely related to physical reversibility. In this paper, we study the problem of finding a small universal reversible Turing machine (URTM). As a result, we obtained a 17-state 5-symbol URTM in the quintuple form that can simulate any cyclic tag system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Baiocchi, C.: Three small universal Turing machines. In: Margenstern, M., Rogozhin, Y. (eds.) MCU 2001. LNCS, vol. 2055, pp. 1–10. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  2. Bennett, C.H.: Logical reversibility of computation. IBM J. Res. Dev. 17, 525–532 (1973)

    Article  MATH  Google Scholar 

  3. Cook, M.: Universality in elementary cellular automata. Complex Systems 15, 1–40 (2004)

    MathSciNet  MATH  Google Scholar 

  4. Woods, D., Neary, T.: On the time complexity of 2-tag systems and small universal Turing machines. In: Proc. of 47th Symposium on Foundations of Computer Science (FOCS), pp. 439–446 (2006)

    Google Scholar 

  5. Fredkin, E., Toffoli, T.: Conservative logic. Int. J. Theoret. Phys. 21, 219–253 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  6. Kudlek, M., Rogozhin, Y.: A universal Turing machine with 3 states and 9 symbols. In: Kuich, W., Rozenberg, G., Salomaa, A. (eds.) DLT 2001. LNCS, vol. 2295, pp. 311–318. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  7. Minsky, M.L.: Computation: Finite and Infinite Machines. Prentice-Hall, Englewood Cliffs (1967)

    MATH  Google Scholar 

  8. Morita, K., Shirasaki, A., Gono, Y.: A 1-tape 2-symbol reversible Turing machine. Trans. IEICE Japan E-72, 223–228 (1989)

    Google Scholar 

  9. Morita, K., Harao, M.: Computation universality of one-dimensional reversible (injective) cellular automata. Trans. IEICE Japan E-72, 758–762 (1989)

    Google Scholar 

  10. Morita, K.: A simple universal logic element and cellular automata for reversible computing. In: Margenstern, M., Rogozhin, Y. (eds.) MCU 2001. LNCS, vol. 2055, pp. 102–113. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  11. Morita, K., Ogiro, T.: Simple universal reversible cellular automata in which reversible logic elements can be embedded. IEICE Trans. on Information and Systems E87-D, 650–656 (2004)

    Google Scholar 

  12. Morita, K.: Simple universal one-dimensional reversible cellular automata. Journal of Cellular Automata (in press)

    Google Scholar 

  13. Rogozhin, Y.: Small universal Turing machines. Theoretical Computer Science 168, 215–240 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  14. Rogozhin, Y.: A universal Turing machine with 22 states and 2 symbols. Romanian J. Inform. Sci. Technol. 1, 259–265 (1998)

    Google Scholar 

  15. Toffoli, T.: Reversible computing. In: de Bakker, J.W., van Leeuwen, J. (eds.) Automata, Languages and Programming. LNCS, vol. 85, pp. 632–644. Springer, Heidelberg (1980)

    Google Scholar 

  16. Toffoli, T.: Bicontinuous extensions of invertible combinatorial functions. Mathematical Systems Theory 14, 12–23 (1981)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Jérôme Durand-Lose Maurice Margenstern

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Morita, K., Yamaguchi, Y. (2007). A Universal Reversible Turing Machine. In: Durand-Lose, J., Margenstern, M. (eds) Machines, Computations, and Universality. MCU 2007. Lecture Notes in Computer Science, vol 4664. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-74593-8_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-74593-8_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-74592-1

  • Online ISBN: 978-3-540-74593-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics