Skip to main content

A Universal Reversible Turing Machine

  • Conference paper

Part of the Lecture Notes in Computer Science book series (LNTCS,volume 4664)

Abstract

A reversible Turing machines is a computing model with a “backward deterministic” property, which is closely related to physical reversibility. In this paper, we study the problem of finding a small universal reversible Turing machine (URTM). As a result, we obtained a 17-state 5-symbol URTM in the quintuple form that can simulate any cyclic tag system.

Keywords

  • reversible computing
  • universal Turing machine
  • cyclic tag system

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Baiocchi, C.: Three small universal Turing machines. In: Margenstern, M., Rogozhin, Y. (eds.) MCU 2001. LNCS, vol. 2055, pp. 1–10. Springer, Heidelberg (2001)

    CrossRef  Google Scholar 

  2. Bennett, C.H.: Logical reversibility of computation. IBM J. Res. Dev. 17, 525–532 (1973)

    CrossRef  MATH  Google Scholar 

  3. Cook, M.: Universality in elementary cellular automata. Complex Systems 15, 1–40 (2004)

    MathSciNet  MATH  Google Scholar 

  4. Woods, D., Neary, T.: On the time complexity of 2-tag systems and small universal Turing machines. In: Proc. of 47th Symposium on Foundations of Computer Science (FOCS), pp. 439–446 (2006)

    Google Scholar 

  5. Fredkin, E., Toffoli, T.: Conservative logic. Int. J. Theoret. Phys. 21, 219–253 (1982)

    CrossRef  MATH  MathSciNet  Google Scholar 

  6. Kudlek, M., Rogozhin, Y.: A universal Turing machine with 3 states and 9 symbols. In: Kuich, W., Rozenberg, G., Salomaa, A. (eds.) DLT 2001. LNCS, vol. 2295, pp. 311–318. Springer, Heidelberg (2002)

    CrossRef  Google Scholar 

  7. Minsky, M.L.: Computation: Finite and Infinite Machines. Prentice-Hall, Englewood Cliffs (1967)

    MATH  Google Scholar 

  8. Morita, K., Shirasaki, A., Gono, Y.: A 1-tape 2-symbol reversible Turing machine. Trans. IEICE Japan E-72, 223–228 (1989)

    Google Scholar 

  9. Morita, K., Harao, M.: Computation universality of one-dimensional reversible (injective) cellular automata. Trans. IEICE Japan E-72, 758–762 (1989)

    Google Scholar 

  10. Morita, K.: A simple universal logic element and cellular automata for reversible computing. In: Margenstern, M., Rogozhin, Y. (eds.) MCU 2001. LNCS, vol. 2055, pp. 102–113. Springer, Heidelberg (2001)

    CrossRef  Google Scholar 

  11. Morita, K., Ogiro, T.: Simple universal reversible cellular automata in which reversible logic elements can be embedded. IEICE Trans. on Information and Systems E87-D, 650–656 (2004)

    Google Scholar 

  12. Morita, K.: Simple universal one-dimensional reversible cellular automata. Journal of Cellular Automata (in press)

    Google Scholar 

  13. Rogozhin, Y.: Small universal Turing machines. Theoretical Computer Science 168, 215–240 (1996)

    CrossRef  MATH  MathSciNet  Google Scholar 

  14. Rogozhin, Y.: A universal Turing machine with 22 states and 2 symbols. Romanian J. Inform. Sci. Technol. 1, 259–265 (1998)

    Google Scholar 

  15. Toffoli, T.: Reversible computing. In: de Bakker, J.W., van Leeuwen, J. (eds.) Automata, Languages and Programming. LNCS, vol. 85, pp. 632–644. Springer, Heidelberg (1980)

    Google Scholar 

  16. Toffoli, T.: Bicontinuous extensions of invertible combinatorial functions. Mathematical Systems Theory 14, 12–23 (1981)

    CrossRef  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Morita, K., Yamaguchi, Y. (2007). A Universal Reversible Turing Machine. In: Durand-Lose, J., Margenstern, M. (eds) Machines, Computations, and Universality. MCU 2007. Lecture Notes in Computer Science, vol 4664. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-74593-8_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-74593-8_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-74592-1

  • Online ISBN: 978-3-540-74593-8

  • eBook Packages: Computer ScienceComputer Science (R0)