Abstract
A reversible Turing machines is a computing model with a “backward deterministic” property, which is closely related to physical reversibility. In this paper, we study the problem of finding a small universal reversible Turing machine (URTM). As a result, we obtained a 17-state 5-symbol URTM in the quintuple form that can simulate any cyclic tag system.
Keywords
- reversible computing
- universal Turing machine
- cyclic tag system
This is a preview of subscription content, access via your institution.
Buying options
Tax calculation will be finalised at checkout
Purchases are for personal use only
Learn about institutional subscriptionsPreview
Unable to display preview. Download preview PDF.
References
Baiocchi, C.: Three small universal Turing machines. In: Margenstern, M., Rogozhin, Y. (eds.) MCU 2001. LNCS, vol. 2055, pp. 1–10. Springer, Heidelberg (2001)
Bennett, C.H.: Logical reversibility of computation. IBM J. Res. Dev. 17, 525–532 (1973)
Cook, M.: Universality in elementary cellular automata. Complex Systems 15, 1–40 (2004)
Woods, D., Neary, T.: On the time complexity of 2-tag systems and small universal Turing machines. In: Proc. of 47th Symposium on Foundations of Computer Science (FOCS), pp. 439–446 (2006)
Fredkin, E., Toffoli, T.: Conservative logic. Int. J. Theoret. Phys. 21, 219–253 (1982)
Kudlek, M., Rogozhin, Y.: A universal Turing machine with 3 states and 9 symbols. In: Kuich, W., Rozenberg, G., Salomaa, A. (eds.) DLT 2001. LNCS, vol. 2295, pp. 311–318. Springer, Heidelberg (2002)
Minsky, M.L.: Computation: Finite and Infinite Machines. Prentice-Hall, Englewood Cliffs (1967)
Morita, K., Shirasaki, A., Gono, Y.: A 1-tape 2-symbol reversible Turing machine. Trans. IEICE Japan E-72, 223–228 (1989)
Morita, K., Harao, M.: Computation universality of one-dimensional reversible (injective) cellular automata. Trans. IEICE Japan E-72, 758–762 (1989)
Morita, K.: A simple universal logic element and cellular automata for reversible computing. In: Margenstern, M., Rogozhin, Y. (eds.) MCU 2001. LNCS, vol. 2055, pp. 102–113. Springer, Heidelberg (2001)
Morita, K., Ogiro, T.: Simple universal reversible cellular automata in which reversible logic elements can be embedded. IEICE Trans. on Information and Systems E87-D, 650–656 (2004)
Morita, K.: Simple universal one-dimensional reversible cellular automata. Journal of Cellular Automata (in press)
Rogozhin, Y.: Small universal Turing machines. Theoretical Computer Science 168, 215–240 (1996)
Rogozhin, Y.: A universal Turing machine with 22 states and 2 symbols. Romanian J. Inform. Sci. Technol. 1, 259–265 (1998)
Toffoli, T.: Reversible computing. In: de Bakker, J.W., van Leeuwen, J. (eds.) Automata, Languages and Programming. LNCS, vol. 85, pp. 632–644. Springer, Heidelberg (1980)
Toffoli, T.: Bicontinuous extensions of invertible combinatorial functions. Mathematical Systems Theory 14, 12–23 (1981)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2007 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Morita, K., Yamaguchi, Y. (2007). A Universal Reversible Turing Machine. In: Durand-Lose, J., Margenstern, M. (eds) Machines, Computations, and Universality. MCU 2007. Lecture Notes in Computer Science, vol 4664. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-74593-8_8
Download citation
DOI: https://doi.org/10.1007/978-3-540-74593-8_8
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-74592-1
Online ISBN: 978-3-540-74593-8
eBook Packages: Computer ScienceComputer Science (R0)