Skip to main content

In this chapter the prospects of using grazing incidence reflection from custom built nested mirrors or reflector arrays are discussed. The aim is to provide a high gain in focused intensity from either laboratory or synchrotron sources. The calculated performances of such systems are presented, taking into account manufacturing tolerances and surface roughness. These calculations indicate that the improvement of roughness is of primary importance, and ways of addressing this during possible manufacturing processes are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. O. Hignette, G. Rostaing, P. Cloetens, A. Rommeveaux, V. Ludwig, A. Freund, Proc. SPIE 4499, 105 (2001)

    Article  ADS  Google Scholar 

  2. K. Yamamura, K. Yamauchi, H. Mimura, Y. Sano, A. Saito, K. Endo, A. Souvorov, M. Yabashi, K. Tamasaku, T. Ishikawa, Y. Mori, Rev. Sci. Instrum. 74, 4549 (2003)

    Article  ADS  Google Scholar 

  3. Y. Mori, K. Yamauchi, K. Yamamura, H. Mimura, Y. Sano, A. Saito, K. Ueno, K. Endo, A. Souvorov, M. Yabashi, K. Tamasaku, T. Ishikawa, Proc. SPIE 4782, 58 (2002)

    Article  Google Scholar 

  4. I.N. Bukreeva, S.B. Dabagov, S. Lagomarsino, Appl. Opt. 43, 6270 (2004)

    Article  ADS  Google Scholar 

  5. C.G. Cheng, R.K. Heilmann, P.T. Konkola, O. Mongrard, G.P. Monnely, M.L. Schattenburg, J. Vac. Sci. Technol. B 18, 3272 (2000)

    Article  Google Scholar 

  6. H.N. Chapman, K.A. Nugent, S.W. Wilkins, Rev. Sci. Instrum. 62, 1542 (1991)

    Article  ADS  Google Scholar 

  7. M.A. Kumakhov, Proc. SPIE 3444, 424 (1998)

    Article  ADS  Google Scholar 

  8. S.W. Wilkins, A.W. Stevenson, K.A. Nugent, H. Chapman, S. Steenstrup, Rev. Sci. Instrum. 60, 1026 (1989)

    Article  ADS  Google Scholar 

  9. G.W. Fraser, J.E. Lees, J.F. Pearson, M.R. Sims, K. Roxburgh, Proc. SPIE 1546, 41 (1992)

    Article  ADS  Google Scholar 

  10. J.F. McGee, A Catoptric X-Ray Optical System (for Use in Laser-Fusion Diagnostics). Final Technical Report, Saint Louis University, Missouri, 1982

    Google Scholar 

  11. J.L. Wiza, Nucl. Instrum. Methods 162, 587 (1979)

    Article  ADS  Google Scholar 

  12. M.V. Gubarev, C.D. Bankston, M.K. Joy, J.J. Kolodziejczak, C.E. McDonald, C.H. Russell, W.M. Gibson, Proc. SPIE 3444, 467 (1998)

    Article  ADS  Google Scholar 

  13. A.N. Brunton, G.W. Fraser, J.E. Lees, I.C.E. Turcu, Appl. Opt. 36, 5461 (1997)

    Article  ADS  Google Scholar 

  14. P.D. Prewett, A.G. Michette, Proc. SPIE 4145, 180 (2000)

    Article  ADS  Google Scholar 

  15. A.G. Michette, P.D. Prewett, A.K. Powell, S.J. Pfauntsch, K.D. Atkinson, B. Boonliang, J. Phys. IV France 104, 277 (2003)

    Article  Google Scholar 

  16. I. Bukreeva, A. Gerardino, A. Surpi, A. Cedola, S. Dabagov, S. Lagomarsino, Proc. SPIE 5974, 59741D (2005)

    Article  ADS  Google Scholar 

  17. I. Bukreeva, A. Surpi, A. Gerardino, S. Lagomarsino, F. Perennes, M. Altissimo, S. Cabrini, A. Carpentiero, A. Vicenzo, P. Cavallotti, Opt. Commun. 259, 366 (2006)

    Article  ADS  Google Scholar 

  18. V.I. Ostashev, V.E. Asadchikov, I.N. Bukreeva, O.N. Gilev, N.A. Havronin, I.V. Kozhevnikov, S.I. Sagitov, Opt. Commun. 155, 17 (1998)

    Article  ADS  Google Scholar 

  19. R. Willingale, http://www.star.le.ac.uk/~rw/(last accessed 25 April 2007)

  20. K.D. Atkinson, M. Folkard, B. Vojnovic, G. Schettino, K.M. Prise, B.D. Michael, A.G. Michette, Radiat. Res. 161, 103 (2004)

    Google Scholar 

  21. M. Folkard, K.M. Prise, C. Shao, S. Gilchrist, A.G. Michette, B. Vojnovic, Acta Phys. Pol. A 109, 257 (2006)

    Google Scholar 

  22. A.A. Ayón, X. Zhang, R. Khanna, Sens. Actuators A 91, 381 (2001)

    Article  Google Scholar 

  23. W. Parkes, Private communication (2006)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Lagomarsino, S., Bukreeva, I., Surpi, A., Michette, A.G., Pfauntsch, S.J., Powell, A.K. (2008). Reflective Optical Arrays. In: Erko, A., Idir, M., Krist, T., Michette, A.G. (eds) Modern Developments in X-Ray and Neutron Optics. Springer Series in optical science, vol 137. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-74561-7_19

Download citation

Publish with us

Policies and ethics