Skip to main content

Part of the book series: Springer Series in chemical physics ((CHEMICAL,volume 90))

  • 1222 Accesses

In the usual mass action chemical kinetics the rate coefficients are parameters with fixed values; these values may change with temperature, pressure, and possibly ionic strength for reactions among ions. In the field of disordered kinetics we broaden the study to systems in which the rate coefficients may vary. For some prior reviews on disordered kinetics, see [1–5].

Rate coefficients may vary due to environmental fluctuations and there are two categories of disorder: static and dynamic. In systems with static disorder the fluctuations of the environment are frozen and one fluctuation, once it occurs, lasts forever. For these systems, the fluctuations are introduced in the theoretical description by using random initial or random boundary conditions. (Thermal fluctuations are usually too small to be considered.) A typical example of a chemical reaction in a system with static disorder is a combination of an active intermediate in radiation chemistry in a disordered material, such as the sulphuric acid glass [6, 7]. The radiation of the active intermediate produces a reaction and the rate of that reaction differs at different sites in the glass. In systems with dynamical disorder the structure of the environment changes as the reaction progresses and the rate coefficients are random in time. An example of dynamic disorder is that of an enzyme in which a catalyzed reaction takes place at the active site of the enzyme and the rate of that reaction may depend on the configuration of the enzyme. As that configuration changes in time so does the rate coefficient of the catalytic reaction [8, 9].

The same system can display both types of disorder, depending on external conditions. For example, in the case of protein–ligand interactions [8, 9], the reaction rates are random because a protein can exist in many different molecular conformations, each conformation being characterized by a different reaction rate. At low temperatures, the transitions among the different conformations can be neglected, and the system displays static disorder. For higher temperatures, however, the transitions among the different conformations cannot be neglected, and the system displays dynamical disorder.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M.F. Shlesinger, Annu. Rev. Phys. Chem. 39, 269–290 (1988)

    Article  ADS  Google Scholar 

  2. R. Zwanzig, Acc. Chem. Res. 23, 148–152 (1990)

    Article  Google Scholar 

  3. A. Plonka, Time-Dependent Reactivity of Species in Condensed Media (Springer, Berlin, 1986)

    Google Scholar 

  4. A. Blumen, H. Schnörer, Angew. Chem. Int. Ed. 29, 113–125 (1990)

    Article  Google Scholar 

  5. A. Blumen, J. Klafter, G. Zumofen, In Optical Spectroscopy of Glasses, ed. by I. Zchokke (Reidel, Dordrecht, 1986) pp. 199–265

    Google Scholar 

  6. A. Plonka, Time-Dependent Reactivity of Species in Condensed Media (Springer, Berlin, 1986)

    Google Scholar 

  7. A. Plonka, Annu. Rep. Sect. C, R. Soc. Chem. 91, 107–174 (1994)

    Google Scholar 

  8. R. Zwanzig, Acc. Chem. Res. 23, 148–152 (1990)

    Article  Google Scholar 

  9. A. Ansari, J. Berendzen, D. Braunstein, B.R. Cowen, H. Frauenfelder, et al. Biophys. Chem. 26, 337–355 (1987)

    Article  Google Scholar 

  10. M.O. Vlad, M.C. Mackey, J. Ross Phys. Rev. E. 50, 798–821 (1994)

    ADS  MathSciNet  Google Scholar 

  11. M. Lax, Rev. Mod. Phys. 38, 359–379 (1966)

    Article  ADS  MathSciNet  Google Scholar 

  12. M. Lax, Rev. Mod. Phys. 38, 541–566 (1966)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  13. N.G. Van Kampen, Phys. Lett. A 76, 104–106 (1980)

    Article  ADS  MathSciNet  Google Scholar 

  14. R. Zwanzig, J. Chem. Phys. 97, 3587–3589 (1992)

    Article  ADS  Google Scholar 

  15. M.O. Vlad, J. Ross, M.C. Mackey, J. Math. Phys. 37, 803–835 (1996)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  16. N.G. Van Kampen, Stochastic Processes in Physics and Chemistry, 2nd edn. (North-Holland, Amsterdam, 1992)

    Google Scholar 

  17. J.W. Haus, K.W. Kehr, Phys. Rep. 150, 263–406 (1987)

    Article  ADS  Google Scholar 

  18. R. Kubo, Adv. Chem. Phys. 15, 101–127 (1969)

    Article  Google Scholar 

  19. E.W. Montroll, J.T. Bendler, J. Stat. Phys. 34, 129–162 (1984)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  20. G. Williams, D.C. Watts, Trans. Faraday Soc. 66, 80–85 (1970)

    Article  Google Scholar 

  21. D.R. Cox, Renewal Theory (Chapman & Hall, London, 1962)

    MATH  Google Scholar 

  22. L.S. Liebovich, J. Stat. Phys. 70, 329–337 (1993)

    Article  ADS  Google Scholar 

  23. P.R.J. Burch, The Biology of Cancer: A New Approach (University Park Press, Baltimore, MD, 1976)

    Google Scholar 

  24. P. Lévy, Théorie de L’Addition des Variables Aleatoires (Villars, Paris, 1937)

    Google Scholar 

  25. B.V. Gnedenko, A.N. Kolmogorov, Limit Distributions for Sums of Independent Random Variables (Addison-Wesley, Reading, MA, 1954)

    MATH  Google Scholar 

  26. T. Förster, Z. Naturforsch. Teil A 4, 321–342 (1949)

    Google Scholar 

  27. R.G. Palmer, D. Stein, E.S. Abrahams, P.W. Anderson, Phys. Rev. Lett. 53, 958–961 (1984)

    Article  ADS  Google Scholar 

  28. M.F. Shlesinger, E.W. Montroll, Proc. Natl. Acad. Sci. USA 81, 1280–1283 (1984)

    Article  ADS  MathSciNet  Google Scholar 

  29. J. Klafter, M.F. Shlesinger, Proc. Natl. Acad. Sci. USA 83, 848–851 (1986)

    Article  ADS  Google Scholar 

  30. W.G. Glöckle, T.F. Nonnenmacher, Macromolecules 24, 6426–6434 (1991)

    Article  ADS  Google Scholar 

  31. D.L. Huber, Phys. Rev. B. 31, 6070–6071 (1985)

    Article  ADS  Google Scholar 

  32. M.O. Vlad, M.C. Mackey, J. Math. Phys. 36, 1834–1853 (1995)

    Article  ADS  MathSciNet  Google Scholar 

  33. M.O. Vlad, M.C. Mackey, B. Schönfisch, Phys. Rev. 53, 4703–4710 (1996)

    ADS  MathSciNet  Google Scholar 

  34. M.O. Vlad, D.L. Huber, J. Ross, J. Chem. Phys. 106, 4157–4167 (1997)

    Article  ADS  Google Scholar 

  35. M.O. Vlad, R. Metzler, T.F. Nonnenmacher, M.C. Mackey, J. Math. Phys. 37, 2279–2306 (1996)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  36. J. Ross, M.O. Vlad, Annu. Rev. Phys. Chem. 50, 51–78 (1999)

    Article  ADS  Google Scholar 

Download references

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

(2008). Disordered Kinetic Systems. In: Thermodynamics and Fluctuations far from Equilibrium. Springer Series in chemical physics, vol 90. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-74555-6_20

Download citation

Publish with us

Policies and ethics