Frontal Face Synthesis Based on Multiple Pose-Variant Images for Face Recognition

  • Congcong Li
  • Guangda Su
  • Yan Shang
  • Yingchun Li
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4642)


Pose variance remains a challenging problem for face recognition. In this paper, a stereoscopic synthesis method for generating a frontal face image is proposed to improve the performance of automatic face recognition system. Through this method, a frontal face image is generated based on two pose-variant face images. Before the synthesis, face pose estimation, feature point extraction and alignment are executed on the two non-frontal images. Benefited from the high accuracy of pose estimation and alignment, the composed frontal face retains the most important features of the two corresponding non-frontal face images. Experiment results show that using the synthetic frontal image achieves a better recognition rate than using the non-frontal ones.


Face recognition pose estimation face alignment stereoscopy texture synthesis 


  1. 1.
    Phillips, P.J., Grother, P., Ross, J., Blackburn, D., Tabassi, E., Bone, M.: Face Recognition Vendor Test 2002: Evaluation Report. (March 2003)Google Scholar
  2. 2.
    Du, Y., Lin, X.: Multi-view face image synthesis using factorization models. In: International Workshop on Human-Computer Interaction (2004)Google Scholar
  3. 3.
    Vetter, T., Poggio, T.: Linear object classes and image synthesis from a single example image. IEEE Transactions on Pattern Analysis and Machine Intelligence 19(7), 733–742 (1997)CrossRefGoogle Scholar
  4. 4.
    Cootes, T., Edwards, G., Taylor, C.: Active appearance models. IEEE Trans. Pattern Analysis and Machine Intelligence 23(6), 681–685 (2001)CrossRefGoogle Scholar
  5. 5.
    Cootes, T., Taylor, C., Cooper, D., et al.: Active shape models ~ their training and application. Computer Vision and Image Understanding 61(1), 38–59 (1995)CrossRefGoogle Scholar
  6. 6.
    Vetter, T.: Synthesis of novel views from a single face image. International Journal of Computer Vision 28(2), 103–116 (1998)CrossRefMathSciNetGoogle Scholar
  7. 7.
    Li, C., Su, G., Meng, K., Zhou, J.: Technology Evaluations on TH-FACE Recognition System. In: Zhang, D., Jain, A.K. (eds.) Advances in Biometrics. LNCS, vol. 3832, pp. 589–597. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  8. 8.
    Vapnik, V.: Statistical Learning Theory. John Wiley & Sons, New York (1998)zbMATHGoogle Scholar
  9. 9.
    Gu, H., Su, G., Du, C.: Feature Points Extraction from Faces. In: IVCNZ 2003. Image and Vision Computing, pp. 154–158 (2003)Google Scholar
  10. 10.
    Du, C., Su, G., Lin, X., Gu, H.: An Improved Multi-resolution Active Shape Model for Face Alignment (in Chinese). Jounal of Optoelectronics. Laser 15(12), 706–710 (2004)Google Scholar
  11. 11.
    Hassanpour, R., Atalay, V.: Delaunay Triangulation based 3D Human Face Modeling from Uncalibrated Images. In: Int. C. Computer Vision and Pattern Recognition, p. 75. IEEE Comput. Soc. Press, Los Alamitos (2004)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Congcong Li
    • 1
  • Guangda Su
    • 1
  • Yan Shang
    • 1
  • Yingchun Li
    • 1
  1. 1.Electronic Engineering Department, Tsinghua University, Beijing, 100084China

Personalised recommendations