An Efficient Iris Coding Based on Gauss-Laguerre Wavelets

  • H. Ahmadi
  • A. Pousaberi
  • A. Azizzadeh
  • M. Kamarei
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4642)


In this paper preliminary results of a new iris recognition algorithm using Gauss-Laguerre filter of circular harmonic wavelets are presented. Circular harmonic wavelets (CHWs) applied in this paper for iris pattern extraction, are polar-separable wavelets with harmonic angular shape. The main focus of this paper is on iris coding using Gauss-Laguerre CHWs which constitute a family of orthogonal functions satisfying wavelet admissibility condition required for multiresolution pyramid structure. It is shown that Gauss-Laguerre wavelets having rich frequency extraction capabilities are powerful tools for coding of iris patterns. By judicious tuning of Laguerre parameters, a 256-byte binary code is generated for each iris. A fast matching scheme based on Hamming distance is used to compute the similarity between pairs of iris codes. Preliminary experimental results on CASIA and our database indicate that the performance of the proposed method is highly accurate with zero false rate and is comparable with Daugman iris recognition algorithm well publisized in literature.


Biometrics Iris recognition Gauss-Laguerre wavelets Circular harmonic wavelets 


  1. 1.
    Jain, A., Bolle, R., Pankanti, S.: Biometrics: Personal Identification in a Networked Society. Kluwer Academic Publishers, Dordrecht (1999)Google Scholar
  2. 2.
    Daugman, J.: High Confidence Visual Recognition of Persons by a Test of Statistical Independence. IEEE Trans. PAMI 15, 1048–1061 (1993)Google Scholar
  3. 3.
    Wildes, R.P.: Iris Recognition: An Emerging Biometric Technology. In: Proc. IEEE, vol. 85, pp. 1348–1363 (1997)Google Scholar
  4. 4.
    Ma, L., Tan, T., Wang, Y., Zhang, D.: Efficient Iris Recognition by Characterizing Key Local Variations. IEEE Trans. Image Processing 13 (2004)Google Scholar
  5. 5.
    Ma, L., Wang, Y., Tan, T.: Personal Iris Recognition Based on Multichannel Gabor Filtering. In: ACCV 2002, Melbourne Australia (2002)Google Scholar
  6. 6.
    Boles, W., Boashash, B.: A Human Identification Technique Using Images of the Iris and Wavelet Transform. IEEE Trans. Signal Processing 46, 1085–1088 (1998)CrossRefGoogle Scholar
  7. 7.
    Tisse, C., Martin, L., Torres, L., Robert, M.: Person Identification Technique Using Human Iris Recognition. In: Proc. Vision Interface, pp. 294–299 (2002)Google Scholar
  8. 8.
    Lim, S., Lee, K., Byeon, O., Kim, T.: Efficient Iris Recognition through Improvement of Feature Vector and Classifier. ETRI Journal 23 (2001)Google Scholar
  9. 9.
    Nam, K.W., Yoon, K.L., Bark, J.S., Yang, W.S.: A Feature Extraction Method for Binary Iris Code Construction. In: Proc. 2nd Int. Conf. Information Technology for Application (2004)Google Scholar
  10. 10.
    Jaboski, P., Szewczyk, R., Kulesza, Z.: Automatic People Identification on the Basis of Iris Pattern Image Processing and Preliminary Analysis. In: Proc. Int. Conf. on Microelectronics, Yugoslavia, vol. 2, pp. 687–690 (2002)Google Scholar
  11. 11.
    Poursaberi, A., Araabi, B.N.: A Half-Eye Wavelet Based Method for Iris Recognition. In: ISDA. Proc. 5th Int. Conf. Intelligent Systems Design and Applications, Wroclaw Poland (2005)Google Scholar
  12. 12.
    Poursaberi, A., Araabi, B.N.: Iris Recognition for Partially Occluded Images: Methodology and Sensitivity Analysis. J. Applied Signal Processing (to be published)Google Scholar
  13. 13.
    Torkamani, A., Azizzadeh, A.: Iris Detection as Human Identification. J. IET Image Processing Journal (to be published, 2007)Google Scholar
  14. 14.
    Jacovitti, G., Neri, A.: Multiscale Image Features Analysis with Circular Harmonic Wavelets. In: Proc. SPIE 2569, Wavelets Appl. Signal Image Process, vol. 2569, pp. 363–372 (1995)Google Scholar
  15. 15.
    Jacovitti, G., Neri, A.: Multiresolution Circular Harmonic Decomposition. IEEE Trans. Signal Processing 48, 3242–3247 (2000)CrossRefMathSciNetGoogle Scholar
  16. 16.
    Capdiferro, L., Casieri, V., Jacovitti, G.: Multiple Feature Based Multiscale Image Enhancement. In: Proc. IEEE DSP, IEEE Computer Society Press, Los Alamitos (2002)Google Scholar
  17. 17.
  18. 18.
    Mansfield, T., Kelly, G., Chandler, D., Kane, J.: Biometric Product Testing Final Report. In: issue 1.0, Nat’l Physical Laboratory of UK (2001)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • H. Ahmadi
    • 1
    • 2
  • A. Pousaberi
    • 1
  • A. Azizzadeh
    • 3
  • M. Kamarei
    • 1
  1. 1.Dept. of Electrical and Computer Engineering,University of Tehran 
  2. 2.Dept. of Electrical and Computer Engineering, University of British Columbia 
  3. 3.Research Center, Ministry of Communication, TehranIran

Personalised recommendations