Horizontal and Vertical 2DPCA Based Discriminant Analysis for Face Verification Using the FRGC Version 2 Database

  • Jian Yang
  • Chengjun Liu
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4642)


This paper presents a horizontal and vertical 2D principal component analysis (2DPCA) based discriminant analysis (HVDA) method for face verification. The HVDA method, which derives features by applying 2DPCA horizontally and vertically on the image matrices (2D arrays), achieves high computational efficiency compared with the traditional PCA and/or LDA based methods that operate on high dimensional image vectors (1D arrays). The HVDA method further performs discriminant analysis to enhance the discriminating power of the horizontal and vertical 2DPCA features. Finally, the HVDA method takes advantage of the color information across two color spaces, namely, the YIQ and the YC b C r color spaces, to further improve its performance. Experiments using the Face Recognition Grand Challenge (FRGC) version 2 database, which contains 12,776 training images, 16,028 controlled target images, and 8,014 uncontrolled query images, show the effectiveness of the proposed method. In particular, the HVDA method achieves 78.24% face verification rate at 0.1% false accept rate on the most challenging FRGC experiment, i.e., the FRGC Experiment 4 (based on the ROC III curve).


Principal Component Analysis (PCA) Biometric Experimentation Environment (BEE) Face Recognition Grand Challenge (FRGC) Fisher Linear Discriminant Analysis (FLD or LDA) feature extraction face verification biometrics color space 


  1. 1.
    Sirovich, L., Kirby, M.: Low-dimensional procedure for characterization of human faces. J. Optical Soc. Of Am. 4, 519–524 (1987)CrossRefGoogle Scholar
  2. 2.
    Turk, M., Pentland, A.: Eigenfaces for recognition. J. Cognitive Neuroscience 3(1), 71–86 (1991)CrossRefGoogle Scholar
  3. 3.
    Belhumeur, P.N., Hespanha, J.P., Kriengman, D.J.: Eigenfaces vs. Fisherfaces: Recognition using class specific linear projection. IEEE Trans. Pattern Anal. Machine Intell. 19(7), 711–720 (1997)CrossRefGoogle Scholar
  4. 4.
    Yang, J., Zhang, D., Frangi, A.F., Yang, J.-Y.: Two-Dimensional PCA: a New Approach to Face Representation and Recognition. IEEE Transaction on Pattern Analysis and Machine Intelligence 26(1), 131–137 (2004)CrossRefGoogle Scholar
  5. 5.
    Liu, C., Wechsler, H.: Robust coding schemes for indexing and retrieval from large face databases. IEEE Trans. Image Processing 9(1), 132–137 (2000)CrossRefGoogle Scholar
  6. 6.
    Liu, C.: Capitalize on Dimensionality Increasing Techniques for Improving Face Recognition Grand Challenge Performance. IEEE Trans. Pattern Analysis and Machine Intelligence 28(5), 725–737 (2006)CrossRefGoogle Scholar
  7. 7.
    Shih, P., Liu, C.: Improving the Face Recognition Grand Challenge Baseline Performance Using Color Configurations Across Color Spaces. In: ICIP 2006. IEEE International Conference on Image Processing, Atlanta, GA, October 8-11 (2006)Google Scholar
  8. 8.
    Jain, A., Nandakumar, K., Ross, A.: Score normalization in multimodel biometric systems. Pattern Recognition 38, 2270–2285 (2005)CrossRefGoogle Scholar
  9. 9.
    Hwang, W., Park, G., Lee, J.: Multiple face model of hybrid Fourier feature for large face image set. In: Proc. IEEE Conf. Computer Vision and Pattern Recognition, IEEE Computer Society Press, Los Alamitos (2006)Google Scholar
  10. 10.
    Phillips, P.J., Flynn, P.J., Scruggs, T., Bowyer, K.W., Chang, J., Hoffman, K., Marques, J., Min, J., Worek, W.: Overview of the Face Recognition Grand Challenge. In: Proc. IEEE Conf. Computer Vision and Pattern Recognition, IEEE Computer Society Press, Los Alamitos (2005)Google Scholar
  11. 11.
    Phillips, P.J., Flynn, P.J., Scruggs, T., Bowyer, W.W.: Preliminary Face Recognition Grand Challenge Results. In: FGR 2006. Proceedings of the 7th International Conference on Automatic Face and Gesture Recognition (2006)Google Scholar
  12. 12.
    Phillips, P.J.: FRGC Third Workshop Presentation. In: FRGC Workshop (February 2005)Google Scholar
  13. 13.
    Fukunaga, K.: Introduction to Statistical Pattern Recognition, 2nd edn. Academic Press, London (1990)zbMATHGoogle Scholar
  14. 14.
    Buchsbaum, W.H.: Color TV Servicing, 3rd edn. Prentice Hall, Englewood Cliffs, NJ (1975)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Jian Yang
    • 1
    • 2
  • Chengjun Liu
    • 1
  1. 1.Department of Computer Science, New Jersey Institute of Technology, Newark, NJ 07102 
  2. 2.Department of Computer Science, Nanjing University of Science and Technology, Nanjing 210094P.R. China

Personalised recommendations