Optimum Detection of Multiplicative-Multibit Watermarking for Fingerprint Images

  • Khalil Zebbiche
  • Fouad Khelifi
  • Ahmed Bouridane
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4642)


Watermarking is an attractive technique which can be used to ensure the security and the integrity of fingerprint images. This paper addresses the problem of optimum detection of multibit, multiplicative watermarks embedded within Generalized Gaussian distribution features in Discrete Wavelet Transform of fingerprint images. The structure of the proposed detector has been derived using the maximum-likelihood approach and the Neyman-Pearson criterion. The parameters of the Generalized Gaussian distribution are directly estimated from the watermarked image, which makes the detector more suitable for real applications. The performance of the detector is tested by taking into account the different quality of fingerprint images and different attacks. The results obtained are very attractive and the watermark can be detected with low detection error. Also, the results reveal that the proposed detector is more suitable for fingerprint images with good visual quality.


Fingerprint images multibit watermarking multiplicative rule maximum-likelihood 


  1. 1.
    Ratha, N.K., Connell, J.H., Bolle, R.M.: Enhancing Security and Privacy in Biometrics-based Authentication systems. Proc. IBM Systems Journal 40 (2001)Google Scholar
  2. 2.
    Schneier, B.: The Uses and Abuses of Biometrics. Comm. ACM 42, 136 (1999)CrossRefGoogle Scholar
  3. 3.
    Pankanti, S., Yeung, M.M.: Verification Watermarks on Fingerprint Recognition and Retreival. In: Proc. SPIE EI, San Jose, CA, vol. 3657, pp. 66–78 (1999)Google Scholar
  4. 4.
    Ratha, N.K., Connell, J.H., Bolle, R.M.: Secure Data Hiding in Wavelet Compressed Fingerprint Images. In: Proc. ACM Multimedia 2000 Workshops, Los Angeles, CA, pp. 127–130. ACM Press, New York (2000)CrossRefGoogle Scholar
  5. 5.
    Uludag, U., Gunsel, B., Ballan, M.: A Spatial Method for Watermarking of Fingerprint Images. In: Proc. First Intl. Workshop on Pattern Recognition in Information Systems, Setúbal, Portugal, pp. 26–33 (2001)Google Scholar
  6. 6.
    Jain, A.K., Uludag, U.: Hiding Biometric Data. Proc. IEEE 25 (2003)Google Scholar
  7. 7.
    Zebbiche, K., Ghouti, L., Khelifi, F., Bouridane, A.: Protecting Fingerprint Data using Watermarking. In: Proc. First AHS Conf., Istanbul, Turkey, pp. 451–456 (2006)Google Scholar
  8. 8.
    Hernandez, J.R., Amado, M., Perez-Gonzales, F.: DCT-Domain Watermarking Techniques for Still Images: Detector Performance Analysis and New Structure. IEEE Trans. Image Processing 9, 55–68 (2000)CrossRefGoogle Scholar
  9. 9.
    Barni, M., Bartolini, F., De Rosa, A., Piva, A.: Optimum Decoding and Detecting of Multiplicative Watermarks. IEEE Trans. Signal Processing 51, 1118–1123 (2003)CrossRefGoogle Scholar
  10. 10.
    Barni, M., Bartolini, F., De Rosa, A., Piva, A.: A New Decoder for the optimum recovery of nonadditive Watermarks. IEEE Trans. Image Processing 10, 357–372 (2001)Google Scholar
  11. 11.
    NG, T.M., Garg, H.K.: Wavelet Domain Watermarking using Maximum-Likelihood Detection. In: Proc. SPIE Conf. Security, Steganographie, Watermarking Multimedia, San Jose, CA, vol. 5306 (2004)Google Scholar
  12. 12.
    Do, M.N., Vetterli, M.: Wavelet-based Texture Retrieval using Generalized Gaussian and Kullback-Leibler. IEEE Trans. Image Processing 11, 146–158 (2002)CrossRefMathSciNetGoogle Scholar
  13. 13.
    Fingerprint Verification Competition:

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Khalil Zebbiche
    • 1
  • Fouad Khelifi
    • 1
  • Ahmed Bouridane
    • 1
  1. 1.School of Electronics, Electrical Engineering and Computer Science, Queen’s University Belfast, BT7 1NN BelfastUK

Personalised recommendations