Correlation-Based Fingerprint Matching with Orientation Field Alignment

  • Almudena Lindoso
  • Luis Entrena
  • Judith Liu-Jimenez
  • Enrique San Millan
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4642)


Correlation-based techniques are a promising approach to fingerprint matching for the new generation of high resolution and touchless fingerprint sensors, since they can match ridge shapes, breaks, etc. However, a major drawback of these techniques is the high computational effort required. In this paper a coarse alignment step is proposed which reduces the amount of correlations that should be performed. Contrarily to other alignment approaches based on minutiae or core location, the alignment is based on the orientation field estimations. Also the orientation coherence is used to identify the best areas for correlation. The accuracy of the approach is demonstrated by experimental results with an FVC2000 fingerprint database. The approach is also very well suited for hardware acceleration due to the regularity of the used operations.


Orientation Field Correlation Computation Fingerprint Image Hardware Acceleration Matching Step 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Jain, A., Chen, Y., Demitrius, M.: Pores and Ridges: Fingerprint Matching using Level 3 Features. In: ICPR 2006. Proc. 18th Int’l Conf. on Pattern Recognition, vol. 4, pp. 477–480 (2006)Google Scholar
  2. 2.
    Parziale, G., Diaz-Santana, E.: The Surround Imager: A Multicamera Touchless Device to Acquire 3D Rolled-Equivalent Fingerprints. In: Zhang, D., Jain, A.K. (eds.) Advances in Biometrics. LNCS, vol. 3832, pp. 244–250. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  3. 3.
    Maio, D., Maltoni, D., Cappelli, R., Wayman, J.L., Jain, A.K.: FVC 2002: Second Fingerprint Verification Competition. In: 16th Proc. Int. Conf. on Pattern Recognition, vol. 3, pp. 811–814 (2002)Google Scholar
  4. 4.
    Maio, D., Maltoni, D., Cappelli, R., Wayman, J.L., Jain, A.K.: FVC 2004: Third Fingerprint Verification Competition. In: Zhang, D., Jain, A.K. (eds.) ICBA 2004. LNCS, vol. 3072, Springer, Heidelberg (2004)Google Scholar
  5. 5.
    Bazen, A.M., Verwaaijen, G.T.B., Gerez, S.H., Veelenturf, L.P.J., van der Zwaang, B.J.: A Correlation-Based Fingerprint Verification System. In: Proc. Workshop on Circuits, Systems and Signal Processing (ProRISC), pp. 205–213 (2000)Google Scholar
  6. 6.
    Ouyang, Z., Feng, J., Su, F., Cai, A.: Fingerprint Matching with Rotation-Descriptor Texture Features. In: ICPR 2006. Proc. 18th Int’l Conf. on Pattern Recognition, vol. 4, pp. 417–420 (2006)Google Scholar
  7. 7.
    Ross, A., Reisman, J., Jain, A.: Fingerprint Matching using Feature Space Correlation. In: Tistarelli, M., Bigun, J., Jain, A.K. (eds.) ECCV 2002. LNCS, vol. 2359, pp. 48–57. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  8. 8.
    Lindoso, A., Entrena, L., Ongil-Lopez, C., Liu, J.: Correlation-based fingerprint matching using FPGAs. In: Proc. Int. conf. on Field Programmable Technology, FPT, pp. 87–94 (2005)Google Scholar
  9. 9.
    Hong, L., Wan, Y., Jain, A.: Fingerprint image enhancement: algorithm and performance evaluation. IEEE Transactions on Pattern Analysis and Machine Intelligence 20(8), 777–789 (1998)CrossRefGoogle Scholar
  10. 10.
    Maltoni, D., Maio, D., Jain, A.K., Prabhakar, S.: Handbook of Fingerprint Recognition. Springer, New York (2003)zbMATHGoogle Scholar
  11. 11.
    Crouzil, A., Massip-Pailhes, L., Castan, S.: A New Correlation Criterion Based on Gradient Fields Similarity. In: Proc. 13th Int. Conf. on Pattern Recognition, pp. 632–636 (1996)Google Scholar
  12. 12.
    Lim, E., Toh, K.A., Suganthan, P.N., Jiang, X., Yan, W.Y.: Fingerprint quality analysis. In: Proceedings on International Conference on Image Processing, pp. 1241–1244. IEEE, Los Alamitos (2004)Google Scholar
  13. 13.
    Maio, D., Maltoni, D., Cappelli, R., Wayman, J.L., Jain, A.K.: FVC2000: Fingerprint Verification Competition. IEEE Transactions on Pattern Analysis Machine Intelligence 24(3), 402–412 (2002)CrossRefGoogle Scholar
  14. 14.
    Park, C.H., Oh, S.K., Kwak, D.M., Kim, B.S., Song, Y.C., Park, K.H.: A new reference point detection algorithm based on orientation patron labelling in fingerprint images. In: Perales, F.J., Campilho, A., Pérez, N., Sanfeliu, A. (eds.) IbPRIA 2003. LNCS, vol. 2652, pp. 697–703. Springer, Heidelberg (2003)Google Scholar
  15. 15.
    Wayman, J., Jain, A., Maltoni, D., Maio, D.: Biometric Systems, Technology, Design and Performance Evaluation. Springer, London (2005)Google Scholar
  16. 16.
    Virtex-4 Family Overview (2004), XilinxInc:

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Almudena Lindoso
    • 1
  • Luis Entrena
    • 1
  • Judith Liu-Jimenez
    • 1
  • Enrique San Millan
    • 1
  1. 1.University Carlos III of Madrid, Electronic Technology Department, Butarque 15, 28911 Leganes, MadridSpain

Personalised recommendations