Fingerprint Matching with an Evolutionary Approach

  • W. Sheng
  • G. Howells
  • K. Harmer
  • M. C. Fairhurst
  • F. Deravi
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4642)


Minutiae point pattern matching is probably the most common approach to fingerprint verification. Although many minutiae point pattern matching algorithms have been proposed, reliable automatic fingerprint verification remains a challenging problem, both with respect to recovering the optimal alignment as well as to the construction of adequate matching function. In this paper, we develop an evolutionary approach for fingerprint matching by combining the use of the global search functionality of a genetic algorithm with a local improvement operator to search for the optimal global alignment between two minutiae sets. Further, we define a reliable matching function for fitness computation. The proposed approach was evaluated on two public domain collections of fingerprint images and compared with previous work. Experimental results show that our approach is reliable and practical for fingerprint verification, and outperforms the traditional genetic algorithm based method.


Fingerprints matching/verification alignment minutiae genetic algorithms 


  1. Areibi, S., Yang, Z.: Effective memetic algorithms for VLSI design automation = genetic algorithms + local search + multi-level clustering. Evolutionary Computation 12(3), 327–353 (2004)CrossRefGoogle Scholar
  2. Bäck, T., Kursawe, F.: Evolutionary algorithms for fuzzy logic: A brief overview. In: Proc. Information Processing and Management of Uncertainty in Knowledge-Based Systems, pp. 659–664 (1994)Google Scholar
  3. Besl, P.J., McKay, N.D.: A method for registration of 3D shapes. IEEE Trans. Pattern Anal. and Machine Intell. 14, 239–256 (1992)CrossRefGoogle Scholar
  4. Branke, J., Middendorf, M., Schneider, F.: Improved heuristics and a genetic algorithm for finding short supersequences. OR Spektrum 20(1), 39–45 (1998)zbMATHCrossRefMathSciNetGoogle Scholar
  5. Chen, X., Tian, J., Yang, X.: A new algorithm for distorted fingerprints matching based on normalized fuzzy similarity measure. IEEE Transactions on Image Processing 15(3), 767–776 (2006)CrossRefGoogle Scholar
  6. Chui, H., Rangarajan, A.: A new point matching algorithm for nonrigid registration. Comput. Vision and Image Und. 89, 114–141 (2003)zbMATHCrossRefGoogle Scholar
  7. Garris, M.D., McCabe, R.M., Watson, C.I., Wilson, C.L.: User’s guide to NIST fingerprint image software (NFIS). NISTIR 6813, National Institute of Standards and Technology, Gaithersburg, MD (2001)Google Scholar
  8. Goldberg, E.: Genetic Algorithms in Search, Optimization, and Machine Learning. Addison-Wesley, Reading, Mass (1989)zbMATHGoogle Scholar
  9. He, Y., Tian, J., Li, L., Chen, H., Yang, X.: Fingerprint matching based on global comprehensive similarity. IEEE Transactions on Pattern Analysis and Machine Intelligence 28(6), 850–862 (2006)CrossRefGoogle Scholar
  10. He, Y., Tian, J., Luo, X., Zhang, T.: Image enhancement and minutiae matching in fingerprint verification. Pattern Recognition Letters 24, 1349–1360 (2003)zbMATHCrossRefGoogle Scholar
  11. Holland, J.H.: Adaptation in Natural and Artificial Systems. University of Michigan Press, Ann Arbor (1975)Google Scholar
  12. Jain, K., Hong, L., Bolle, R.: On-line fingerprint verification. IEEE Transactions on Pattern Analysis and Machine Intelligence 19(4), 302–314 (1997)CrossRefGoogle Scholar
  13. Jain, K., Hong, L., Pankanti, S., Bolle, R.: An identity-authentication system using fingerprints. Proc. IEEE 85(9), 1365–1388 (1997)CrossRefGoogle Scholar
  14. Jea, T.Y., Govindaraju, V.: A minutia-based partial fingerprint recognition system. Pattern Recognition 38, 1672–1684 (2004)CrossRefGoogle Scholar
  15. Jiang, X., Yau, W.: Fingerprint minutiae matching based on the local and global structures. In: Proc. 15th International Conference on Pattern Recognition, pp. 1038–1041 (2000)Google Scholar
  16. Le, T.V., Cheung, K.Y., Nguyen, M.H.: A fingerprint recognizer using fuzzy evolutionary programming. In: Proc. of 34th International Conference on System Sciences (2001)Google Scholar
  17. Lee, H.C., Gaensslen, R.E. (eds.): Advances in Fingerprint Technology. Elsevier, New York (1991)Google Scholar
  18. Li, F., Morgan, R., Williams, D.: Hybrid genetic approaches to ramping rate constrained dynamic economic dispatch. Electric Power Systems Research 43(2), 97–103 (1997)CrossRefGoogle Scholar
  19. Maio, D., Maltoni, R., Cappelli, J., Wayman, L., Jain, A.K.: FVC 2002: second fingerprint verification competition. In: Proc. International Conference on Pattern Recognition, pp. 811–814 (2002)Google Scholar
  20. Maltoni, D., Maio, D., Jain, A.K., Prabhakar, S.: Handbook of Fingerprint Recognition. Springer, Heidelberg (2003)zbMATHGoogle Scholar
  21. Merz, P., Freisleben, B.: Memetic algorithms and the fitness landscape of the graph bi-partitioning problem. LNCS, pp. 765–774 (1998)Google Scholar
  22. Pankanti, S., Prabhakar, S., Jain, A.K.: On the individuality of fingerprints. IEEE Trans. Patt. Anal. Mach. Intell. 24(8), 1010–1025 (2002)CrossRefGoogle Scholar
  23. Qi, J., Shi, Z., Zhao, X., Wang, Y.: A robust fingerprint matching method. In: 7th IEEE Workshops on Application of Computer Vision, pp. 105–110 (2005)Google Scholar
  24. Tan, X., Bhanu, B.: Fingerprint matching by genetic algorithms. Pattern Recognition 39(3), 465–477 (2006)zbMATHCrossRefGoogle Scholar
  25. Tico, M., Kuosmanen, P.: Fingerprint matching using an orientation-based minutia descriptor. IEEE Transactions on Pattern Analysis and Machine Intelligence 25(8), 1009–1014 (2003)CrossRefGoogle Scholar
  26. Tong, X., Huang, J., Tang, X., Shi, D.: Fingerprint minutiae matching using the adjacent feature vector. Pattern Recognition Letters 26(9), 1337–1345 (2005)CrossRefGoogle Scholar
  27. Whitley, D.: Modeling hybrid genetic algorithms. In: Winter, G., Periaux, J., Galan, M., Cuesta, P. (eds.) Genetic Algorithms in Engineering and Computer Science, pp. 191–201. John Wiley, Chichester (1995)Google Scholar
  28. Zhu, J., Yin, P., Zhang, G.M.: Fingerprint matching based on global alignment of multiple reference minutiae. Pattern Recognition 38(10), 1685–1694 (2005)CrossRefGoogle Scholar
  29. The Science of Fingerprints: Classification and Uses. Federal Bureau of Investigation, Washington, DC (1984)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • W. Sheng
    • 1
  • G. Howells
    • 1
  • K. Harmer
    • 1
  • M. C. Fairhurst
    • 1
  • F. Deravi
    • 1
  1. 1.Department of Electronics, University of Kent, Canterbury, Kent, CT2 7NTUnited Kingdom

Personalised recommendations