2^N Discretisation of BioPhasor in Cancellable Biometrics

  • Andrew Beng Jin Teoh
  • Kar-Ann Toh
  • Wai Kuan Yip
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4642)

Abstract

BioPhasor was introduced as a form of cancellable biometrics which integrates a set of user-specific random numbers (RN) with biometric features. This BioPhasor was shown to fulfil diversity, reusability and performance requirements in cancellable biometrics formulation. In this paper, we reformulate and enhance the BioPhasor in terms of verification performance and security, through a 2 N stage discretisation process. The formulation is experimented under two scenarios (legitimate and stolen RN) using 2400 FERET face images. Apart from the experiments, desired properties such as one-way transformation and diversity are also examined.

Keywords

BioPhasor Cancellable biometrics 2N stage discretisation Face Biometrics 

References

  1. 1.
    Andrew Teoh, B.J., Goh, A., David Ngo, C.L.: Random Multispace Quantisation as an Analytic Mechanism for BioHashing of Biometric and Random Identity Inputs. IEEE Transactions on Pattern Analysis and Machine Intelligence 28(12), 1892–1901 (2006)CrossRefGoogle Scholar
  2. 2.
    Ratha, N., Connell, J., Bolle, R.: Enhancing security and privacy in biometrics-based authentication systems. IBM Syst. J. 40(3), 614–634 (2001)CrossRefGoogle Scholar
  3. 3.
    Uludag, U., Pankanti, S., Prabhakar, S., Jain, A.K.: Biometric Cryptosystems: Issues and Challenges. Proceedings of the IEEE 92(6), 948–960 (2004)CrossRefGoogle Scholar
  4. 4.
    Soutar, C., Roberge, D., Stoianov, A.R., Gilroy, Vijaya Kumar, B.V.K.: Biometrics Encryption. In: Nichols, R.K. (ed.) ICSA Guide to Cryptography, pp. 649–675. McGraw-Hill, New York (1999)Google Scholar
  5. 5.
    Andrew, B.J., David Ngo, C.L.: Cancelablle Biometrics Featuring With Tokenised Random Number. Pattern Recognition Letter 26(10), 1454–1460 (2005)CrossRefGoogle Scholar
  6. 6.
    Savvides, M., Vijaya Kumar, B.V.K., Khosla, P.K.: Cancelable Biometrics Filters for Face Recognition. Int. Conf. of Pattern Recognition 3, 922–925 (2004)Google Scholar
  7. 7.
    Andrew Teoh, B., David Ngo, C.: Cancellable Biometrics Realization through BioPhasoring. In: 9th IEEE International Conference on Control, Automation, Robotics and Vision, ICARCV 2006, pp. 201–205 (2006)Google Scholar
  8. 8.
    Phillips, P., Moon, H., Rauss, P., Rizvi, S.: The FERET Database and Evaluation Methodology for Face Recognition Algorithms. In: Proc. IEEE Conf on Computer Vision and Pattern Recognition, pp. 137–143. IEEE Computer Society Press, Los Alamitos (1997)CrossRefGoogle Scholar
  9. 9.
    Turk, M., Pentland, A.: Eigenfaces for Recognition. Journal of Cognitive Neuroscience 13(1), 71–86 (1991)CrossRefGoogle Scholar
  10. 10.
    Shan, S., Cao, B., Gao, W., Zhao, D.: Extended Fisherface for face recognition from a single example image per person. Proc. IEEE Int. Symp. Circ. Syst. 2, 81–84 (2002)Google Scholar
  11. 11.
    Blondel, V.D., Tsitsiklis, J.N.: A Survey of Computational Complexity Results in Systems and Control. Automatica 36(9), 1249–1274 (2000)MATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Joy, T.M., Thomas, J.A.: Elements of Information Theory, 2nd edn. John Wiley & Sons Inc., Chichester (1991)MATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Andrew Beng Jin Teoh
    • 1
  • Kar-Ann Toh
    • 1
  • Wai Kuan Yip
    • 2
  1. 1.Biometrics Engineering Research Center (BERC), Yonsei University, SeoulSouth Korea
  2. 2.Faculty of Information Science and Technology (FIST), Multimedia University, Jalan Ayer Keroh Lama, 75450 MelakaMalaysia

Personalised recommendations