Reducing the Effect of Noise on Human Contour in Gait Recognition

  • Shiqi Yu
  • Daoliang Tan
  • Kaiqi Huang
  • Tieniu Tan
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4642)

Abstract

Gait can be easily acquired at a distance, so it has become a popular biometric especially in intelligent visual surveillance. In gait-based human identification there are many factors that may degrade the performance, and noise on human contours is a significant one because to extract contours perfectly is a hard problem especially in a complex background. The contours extracted from video sequences are often polluted by noise. To improve the performance, we have to reduce the effect of noise. Different from the methods which use dynamic time warping (DTW) in previous work to match sequences in the time domain, a DTW-based contour similarity measure in the spatial domain is proposed to reduce the effect of noise. The experiments on a large gait database show the effectiveness of the proposed method.

Keywords

Video Sequence Gait Cycle Dynamic Time Warping Gait Recognition Dynamic Time Warping Distance 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Johnson, A.Y., Bobick, A.F.: A multi-view method for gait recognition using static body parameters. In: Bigun, J., Smeraldi, F. (eds.) AVBPA 2001. LNCS, vol. 2091, pp. 301–311. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  2. 2.
    Wang, L., Ning, H., Tan, T., Hu, W.: Fusion of static and dynamic body biometrics for gait recognition. IEEE Transactions on Circuits and Systems for Video Technology 14(2), 149–158 (2004)CrossRefGoogle Scholar
  3. 3.
    Yam, C.Y., Nixon, M.S., Carter, J.N.: On the relationship of human walking and running: automatic person identification by gait. In: Proc. of International Conference on Pattern Recognition, Quebec, Canada, pp. 287–290 (2002)Google Scholar
  4. 4.
    Mowbray, S.D., Nixon, M.S.: Automatic gait recognition via fourier descriptors of deformable objects. In: Kittler, J., Nixon, M.S. (eds.) AVBPA 2003. LNCS, vol. 2688, pp. 566–573. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  5. 5.
    Wang, L., Tan, T., Ning, H., Hu, W.: Silhouette analysis-based gait recognition for human identification. IEEE Transactions on Pattern Analysis and Machine Intelligence 25(12), 1505–1518 (2003)CrossRefGoogle Scholar
  6. 6.
    Niyogi, S.A., Adelson, E.H.: Analyzing and recognizing walking figures in xyt. In: CVPR, pp. 469–474. IEEE Computer Society Press, Los Alamitos (1994)Google Scholar
  7. 7.
    Yu, S., Wang, L., Hu, W., Tan, T.: Gait analysis for human identification in frequency domain. In: Proc. of the 3rd International Conference on Image and Graphics, Hong Kong, China, pp. 282–285 (December 2004)Google Scholar
  8. 8.
    Lam, T.H.W., Lee, R.S.T.: Human identification by using the motion and static characteristic of gait. In: ICPR, pp. 996–999. IEEE Computer Society Press, Los Alamitos (2006)Google Scholar
  9. 9.
    Cuntoor, N., Kale, A., Chellappa, R.: Combining multiple evidences for gait recognition. In: Proc. of the International Conference on Acoustics Speech and Signal Processing, Hong Kong (cancelled), April 6-10, 2003, vol. III, pp. 113–116 (2003)Google Scholar
  10. 10.
    Boulgouris, N.V., Plataniotis, K.N., Hatzinakos, D.: Gait recognition using dynamic time warping. In: Proc. of the 6th IEEE workshop on multimedia signal processing, BC, Canada, pp. 263–266. IEEE Computer Society Press, Los Alamitos (2004)CrossRefGoogle Scholar
  11. 11.
    Pandey, N., Abdulla, W., Salcic, Z.: Human identification using vector quantisation technique. In: Proceedings of the Eighth International Symposium on Signal Processing and Its Applications, Sydney, Australia, pp. 671–674 (August 2005)Google Scholar
  12. 12.
    Veeraraghavan, A., Member, S., Roy-Chowdhury, A.K., Chellappa, R.: Matching shape sequences in video with applications in human movement analysis. IEEE Transactions on Pattern Analysis and Machine Intelligence 27(12), 1896–1909 (2005)CrossRefGoogle Scholar
  13. 13.
    Yu, S., Tan, D., Tan, T.: A framework for evaluating the effect of view angle, clothing and carrying condition on gait recognition. In: ICPR 2006. Proc. of the 18’th International Conference on Pattern Recognition, Hong Kong, China, pp. 441–444 (August 2006)Google Scholar
  14. 14.
    Sarkar, S., Phillips, P.J., Liu, Z., Vega, I.R., Grother, P., Bowyer, k.W.: The humanid gait challenge problem: Data sets, performance, and analysis. IEEE Transactions on Pattern Analysis and Machine Intelligence 27(2), 162–177 (2005)CrossRefGoogle Scholar
  15. 15.
    Kruskal, L.: The symmetric time-warping problem: From continuous to discrete. In: Sankoff, D., Kruskal, J.B. (eds.) Time Warps, String Edits, and Macromolecules: The Theory and Practice of Sequence Comparison, Addison-Wesley, Reading (1983)Google Scholar
  16. 16.
    Veeraraghavan, A., Chellappa, R., Roy-Chowdhury, A.K.: The function space of an activity. In: CVPR 2006. Proceedings of the 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, New York, USA, pp. 959–968. IEEE Computer Society Press, Los Alamitos (2006)Google Scholar
  17. 17.
    Keogh, E.J., Pazzani, M.J.: Derivative dynamic time warping. In: Proc. of the First SIAM International Conference on Data Mining, Chicago, USA, pp. 285–289 (April 2001)Google Scholar
  18. 18.
    Yu, S., Tan, D., Tan, T.: Modelling the effect of view angle variation on appearance-based gait recognition. In: Proc. of the 7th Asian Conference on Computer Vision, Hyderabad, India, pp. 807–816 (January 2006)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Shiqi Yu
    • 1
  • Daoliang Tan
    • 1
  • Kaiqi Huang
    • 1
  • Tieniu Tan
    • 1
  1. 1.National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, P.O. Box 2728, Beijing, 100080China

Personalised recommendations