Advertisement

Fingerprint Recognition Based on Combined Features

  • Yangyang Zhang
  • Xin Yang
  • Qi Su
  • Jie Tian
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4642)

Abstract

In this paper, we represent the fingerprint with a novel local feature descriptor, which is composed of minutia, the sample points on associated ridge and the adjacent orientation distribution. Then a novel fingerprint recognition method is proposed combining the orientation field and the local feature descriptor. We compare two descriptor lists from the input and template fingerprints to calculate a set of transformation vectors for fingerprint alignment. The similarity score is evaluated by fusing the orientation field and the local feature descriptor. The experiments have been conducted on three large-scale databases. The comparison results approve that our algorithm is more accurate and robust than previous methods based on the minutiae or ridge features, especially for those poor-quality and partial fingerprints.

Keywords

orientation field local feature descriptor fingerprint alignment fusing similarity score 

References

  1. 1.
    Jain, A.K., Hong, L., Bolle, R.: On-Line Fingerprint Verification. IEEE Trans. Pattern Analysis and Machine Intelligence 19(4), 302–314 (1997)CrossRefGoogle Scholar
  2. 2.
    Kovcs-Vajna, Z.M.: A Fingerprint Verification System Based on Triangular Matching and Dynamic Time Warping. IEEE Trans. Pattern Analysis and Machine Intelligence 22(11), 1266–1276 (2000)CrossRefGoogle Scholar
  3. 3.
    Tian, J., He, Y.L., Chen, H., Yang, X.: A Fingerprint Identification Algorithm by Clustering Similarity. Science in China Ser. F Information Sciences 48(4), 437–451 (2005)zbMATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Feng, J.J., Ouyang, Z.Y., Cai, A.: Fingerprint Matching Using Ridges. Pattern Recognition 39, 2131–2140 (2006)zbMATHCrossRefGoogle Scholar
  5. 5.
    Gu, J.W., Zhou, J., Yang, C.Y.: Fingerprint Recognition by Combining Global Structure and Local Cues. IEEE Transaction on Image Processing 15(7), 1952–1964 (2006)CrossRefGoogle Scholar
  6. 6.
    Tico, M., Kuosmanen, P.: Fingerprint Matching Using an Orientation-based Minutia Descriptor. IEEE Trans. on Pattern Analysis and Machine Intelligence 25(8), 1009–1014 (2003)CrossRefGoogle Scholar
  7. 7.
    Chen, Y., Dass, S.C., Jain, A.K.: Fingerprint Quality Indices for Predicting Authentication Performance. In: Kanade, T., Jain, A., Ratha, N.K. (eds.) AVBPA 2005. LNCS, vol. 3546, pp. 160–170. Springer, Heidelberg (2005)Google Scholar
  8. 8.
    Luo, X.P., Tian, J.: Image Enhancement and Minutia Matching Algorithm in Automated Fingerprint Identification System. Journal of software 13 (2002)Google Scholar
  9. 9.
    Kittler, J., Hatef, M., Duin, P.W., Matas, J.: On combining classifiers. IEEE Trans. Pattern Analysis and Machine Intelligence 20(3), 226–239 (1998)CrossRefGoogle Scholar
  10. 10.
    Ho, T.K., Hull, J.J., Srihari, S.N.: Decision combination in multiple classifier systems. IEEE Trans. Pattern Analysis and Machine Intelligence 16(1), 66–75 (1994)CrossRefGoogle Scholar
  11. 11.
  12. 12.
    Maio, D., Maltoni, D., Cappelli, R., Wayman, J.L., Jain, A.K.: FVC2004: Third Fingerprint Verification Competition. In: Zhang, D., Jain, A.K. (eds.) ICBA 2004. LNCS, vol. 3072, pp. 1–7. Springer, Heidelberg (2004)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Yangyang Zhang
    • 1
  • Xin Yang
    • 1
  • Qi Su
    • 1
  • Jie Tian
    • 1
  1. 1.Center for Biometrics and Security Research, Key Laboratory of Complex Systems, and Intelligence Science, Institute of Automation, Chinese Academy of Sciences, Graduate School of the Chinese Academy of Sciences, P.O.Box 2728 Beijing 100080, Email:tian@ieee.orgChina

Personalised recommendations