Color Face Tensor Factorization and Slicing for Illumination-Robust Recognition

  • Yong-Deok Kim
  • Seungjin Choi
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4642)

Abstract

In this paper we present a face recognition method based on multiway analysis of color face images, which is robust to varying illumination conditions. Illumination changes cause large variations on color in face images. The main idea is to extract features with minimal color variations but with retaining image spatial information. We construct a tensor of color image ensemble, one of its coordinate reflects color mode, and employ the higher-order SVD (a multiway extension of SVD) of the tensor to extract such features. Numerical experiments show that our method outperforms existing subspace analysis methods including principal component analysis (PCA), generalized low rank approximation (GLRAM) and concurrent subspace analysis (CSA), in the task of face recognition under varying illumination conditions. The superiority is even more substantial in the case of small training sample size.

References

  1. 1.
    Yang, J., Zhang, D., Frangi, A.F., Yang, J.Y.: Two-dimensional PCA: A new approach to appearance-based face representation and recognition. IEEE Trans. Pattern Analysis and Machine Intelligence 26, 131–137 (2004)CrossRefGoogle Scholar
  2. 2.
    Ye, J.: Generalized low rank approximations of matrices. In: Proceedings of International Conference on Machine Learning, Banff, Canada, pp. 887–894 (2004)Google Scholar
  3. 3.
    Xu, D., Yan, S., Zhang, L., Zhang, H.J., Liu, Z., Shum, H.Y.: Concurrent subspace analysis. In: Proceedings of IEEE International Conference on Computer Vision and Pattern Recognition, San Diego, CA, pp. 203–208. IEEE Computer Society Press, Los Alamitos (2005)Google Scholar
  4. 4.
    Vasilescu, M.A.O., Terzopoulos, D.: Multilinear subsapce analysis of image ensembles. In: Proceedings of IEEE International Conference on Computer Vision and Pattern Recognition, Madison, Wisconsin (2003)Google Scholar
  5. 5.
    de Lathauwer, L., de Moor, B., Vandewalle, J.: A multilinear singular value decomposition. SIAM J. Matrix Anal. Appl. 21, 1253–1278 (2000)MATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    de Lathauwer, L., de Moor, B., Vandewalle, J.: One the best rank-1 and rank-(R 1,R 2,...,R N) approximation of higher-order tensros. SIAM J. Matrix Anal. Appl. 21, 1324–1342 (2000)MATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Vasilescu, M.A.O., Terzopoulos, D.: Multilinear independent component analysis. In: Proceedings of IEEE International Conference on Computer Vision and Pattern Recognition, San Diego, California (2005)Google Scholar
  8. 8.
    Tucker, L.R.: Some mathematical notes on three-mode factor analysis. Psychometrika 31, 279–311 (1966)CrossRefMathSciNetGoogle Scholar
  9. 9.
    Kroonenberg, P.M., de Leeuw, J.: Principal component analysis of three-mode data by means of alternating least squares algorithms. Psychometrika 45, 69–97 (1980)MATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Kolda, T.G.: Multilinear operators for higher-order decompositions. Technical Report SAND2006-2081, Sandia National Laboratories (2006)Google Scholar
  11. 11.
    Bader, B.W., Kolda, T.G.: Algorithm 862: MATLAB tensor classes for fast algorithm prototyping. ACM Trans. Mathematical Software 32, 635–653 (2006)CrossRefMathSciNetGoogle Scholar
  12. 12.
    Sim, T., Baker, S., Bsat, M.: The CMU pose, illumination, and expression database. IEEE Trans. Pattern Analysis and Machine Intelligence 25, 1615–1618 (2003)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Yong-Deok Kim
    • 1
  • Seungjin Choi
    • 1
  1. 1.Department of Computer Science, Pohang University of Science and Technology, San 31 Hyoja-dong, Nam-gu, Pohang 790-784Korea

Personalised recommendations