Fusion of Near Infrared Face and Iris Biometrics

  • Zhijian Zhang
  • Rui Wang
  • Ke Pan
  • Stan Z. Li
  • Peiren Zhang
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4642)

Abstract

In this paper, we present a method for fusing face and iris biometrics using single near infrared (NIR) image. Fusion of NIR face and iris modalities is a natural way of doing multi-model biometrics because they can be acquired in a single image. An NIR face image is taken using a high resolution NIR camera. Face and iris are segmented from the same NIR image. Face and iris features are then extracted from the segmented parts. Matching of face and iris is done using the respective features. The matching scores are fused using various rules. Experiments give promising results.

Keywords

NIR imaging face iris multimodal biometrics score fusion 

References

  1. 1.
    Hong, L., Jain, A., Pankanti, S.: Can multibiometrics improve performance? In: Proceedings AutoID 1999, pp. 947–950 (1999)Google Scholar
  2. 2.
    Wang, Y., Tan, T., Jain, A.K.: Combining face and iris biometrics for identity verification. In: Kittler, J., Nixon, M.S. (eds.) AVBPA 2003. LNCS, vol. 2688, pp. 805–813. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  3. 3.
    Son, B., Lee, Y.: Biometric authentication system using reduced joint feature vector of iris and face. In: Kanade, T., Jain, A., Ratha, N.K. (eds.) AVBPA 2005. LNCS, vol. 3546, Springer, Heidelberg (2005)Google Scholar
  4. 4.
    Moses, Y., Adini, Y., Ullman, S.: Face recognition: The problem of compensating for changes in illumination direction. In: Eklundh, J.-O. (ed.) ECCV 1994. LNCS, vol. 800, pp. 286–296. Springer, Heidelberg (1994)Google Scholar
  5. 5.
    Li, S.Z., Chu, R., Liao, S., Zhang, L.: Illumination invariant face recognition using near-infrared images. IEEE Transactions on Pattern Analysis and Machine Intelligence 26 (2007)Google Scholar
  6. 6.
    Turk, M.A., Pentland, A.P.: Eigenfaces for recognition. Journal of Cognitive Neuroscience 3, 71–86 (1991)CrossRefGoogle Scholar
  7. 7.
    Daugman, J.G.: High confidence visual recognition of persons by a test of statistical independence. IEEE Trans. Pattern Analysis and Machine Intelligence 15, 1148–1161 (1993)CrossRefGoogle Scholar
  8. 8.
    Jain, A., Nandakumarand, K., Ross, A.: Score normalization in multimodal biometric systems. Pattern recognition (to appear)Google Scholar
  9. 9.
    Snelick, R., Uludag, U., Mink, A., Indovina, M., Jain, A.: Large scale evaluation of multimodal biometric authentication using state-of-the-art systems (2005)Google Scholar
  10. 10.
    Li, S.Z., Chu, R.F., Ao, M., Zhang, L., He, R.: Highly accurate and fast face recognition using near infrared images. In: ICB 2006. Proceedings of IAPR International Conference on Biometric, Hong Kong, pp. 151–158 (2006)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Zhijian Zhang
    • 1
  • Rui Wang
    • 2
  • Ke Pan
    • 1
  • Stan Z. Li
    • 2
  • Peiren Zhang
    • 1
  1. 1.University of Science and Technology of China, Hefei 230026China
  2. 2.Center for Biometrics and Security Research &, National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing 100080China

Personalised recommendations