Advertisement

Embedded Palmprint Recognition System on Mobile Devices

  • Yufei Han
  • Tieniu Tan
  • Zhenan Sun
  • Ying Hao
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4642)

Abstract

There are increasing requirements for mobile personal identification, e.g. to protect identity theft in wireless applications. Based on built-in cameras of mobile devices, palmprint images may be captured and analyzed for individual authentication. However, current available palmprint recognition methods are not suitable for real-time implementations due to the limited computational resources of handheld devices, such as PDA or mobile phones. To solve this problem, in this paper, we propose a sum-difference ordinal filter to extract discriminative features of palmprint using only +/- operations on image intensities. It takes less than 200 ms for our algorithm to verify the identity of a palmprint image on a HP iPAQ PDA, about 1/10 of state-of-the-art methods’ complexity, while this approach also achieves high accuracy on the PolyU palmprint database. Thanks to the efficient palmprint feature encoding scheme, we develop a real-time embedded palmprint recognition system, working on the HP PDA.

Keywords

Mobile Device Limited Computational Resource Palmprint Image Feature Template Palmprint Recognition 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Li, W., Zhang, D., Xu, Z.: Palmprint Identification by Fourier Transform. International Journal of PRAI 16(4), 417–432 (2002)Google Scholar
  2. 2.
    Sun, Z.N., Tan, T.N., Wang, Y.H., Li, S.Z.: Ordinal Palmprint Representation for Personal Identification. In: Proc. of CVPR 2005, vol. 1, pp. 279–284 (2005)Google Scholar
  3. 3.
    Zhang, D., Kong, W.K., You, J., Wong, M.: Online Palmprint Identification. IEEE Trans on PAMI 25(9), 1041–1050 (2003)Google Scholar
  4. 4.
    Zhang, D., Shu, W.: Two Novel Characteristics in Palmprint Verification: Datum Point Invariance and Line Feature Matching. Pattern Recognition 32(4), 691–702 (1999)CrossRefGoogle Scholar
  5. 5.
    Duta, N., Jain, A.K., Mardia, K.V.: Matching of Palmprint. Pattern Recognition Letters 23(4), 477–485 (2001)CrossRefGoogle Scholar
  6. 6.
    Lu, G., Zhang, D., Wang, K.: Palmprint Recognition Using Eigenpalms Features. Pattern Recognition Letters 24(9-10), 1463–1467 (2003)zbMATHCrossRefGoogle Scholar
  7. 7.
    Han, C.C., Cheng, H.L., Fan, K.C., Lin, C.L.: Personal Authentication Using Palmprint Features. Pattern Recognition 36(2), 371–381 (2003)CrossRefGoogle Scholar
  8. 8.
    You, J., Kong, W.K., Zhang, D., Cheung, K.: On Hierarchical Palmprint Coding with Multi- features for Personal Identification in Large Databases. IEEE Trans. on Circuit Systems for Video Technology 14(2), 234–243 (2004)CrossRefGoogle Scholar
  9. 9.
    Zhang, L., Zhang, D.: Characterization of Palmprints by Wavelet Signatures via Directional Context Modeling. IEEE Trans. on SMC-B 34(3), 1335–1347 (2004)Google Scholar
  10. 10.
    Kong, W.K., Zhang, D.: Feature-Level Fusion for Effective Palmprint Authentication. In: Zhang, D., Jain, A.K. (eds.) ICBA 2004. LNCS, vol. 3072, pp. 520–523. Springer, Heidelberg (2004)Google Scholar
  11. 11.
    Kong, W.K., Zhang, D.: Competitive Coding Scheme for Palmprint Verification. In: Proc. of the 17th ICPR, vol. 1, pp. 520–523 (2004)Google Scholar
  12. 12.
    Connie, T., Jin, A.T.B., Ong, M.G.K., Ling, D.N.C.: Automated palmprint recognition system. Image and Vision Computing 23, 501–515 (2005)CrossRefGoogle Scholar
  13. 13.
  14. 14.
    Daugman, J., Williams, G.: A Proposed Standard for Biometric Decidability. In: Proc. CardTech/SecureTech Conference, Atlanta, GA, pp. 223–234 (1996)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Yufei Han
    • 1
  • Tieniu Tan
    • 1
  • Zhenan Sun
    • 1
  • Ying Hao
    • 1
  1. 1.Center for Biometrics and Security Research, National Labrotory of Pattern Recognition,Institue of Automation, Chinese Acdamey of Sciences, P.O. Box 2728, Beijing, 100080P.R. China

Personalised recommendations