Palmprint Recognition Based on Directional Features and Graph Matching

  • Yufei Han
  • Tieniu Tan
  • Zhenan Sun
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4642)


Palmprint recognition, as a reliable personal identity check method, has been receiving increasing attention during recent years. According to previous work, local texture analysis supplies the most promising framework for palmprint image representation. In this paper, we propose a novel palmprint recognition method by combining statistical texture descriptions of local image regions and their spatial relations. In our method, for each image block, a spatial enhanced histogram of gradient directions is used to represent discriminative texture features. Furthermore, we measure similarity between two palmprint images using a simple graph matching scheme, making use of structural information. Experimental results on two large palmprint databases demonstrate the effectiveness of the proposed approach.


Graph Match Palmprint Image Palmprint Recognition Local Image Region Palmprint Database 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Kong, W.K., Zhang, D., Li, W.X.: Palmprint feature extraction using 2-D Gabor filters. Pattern recognition 36, 2339–2347 (2003)CrossRefGoogle Scholar
  2. 2.
    You, J., Li, W.X., Zhang, D.: Hierarchical palmprint identification via multiple feature extraction. Pattern recognition 35(4), 847–859 (2002)zbMATHCrossRefGoogle Scholar
  3. 3.
    Zhang, D., Kong, W.K., You, J., Wong, M.: Online Palmprint Identification. IEEE Trans on PAMI 25(9), 1041–1050 (2003)Google Scholar
  4. 4.
    Kong, W.K., Zhang, D.: Feature-Level Fusion for Effective Palmprint Auentication. In: Zhang, D., Jain, A.K. (eds.) ICBA 2004. LNCS, vol. 3072, pp. 520–523. Springer, Heidelberg (2004)Google Scholar
  5. 5.
    Kong, W.K., Zhang, D.: Competitive Coding Scheme for Palmprint Verification. In: Proc.of the 17th ICPR, vol. 14, pp. 520–523 (2004)Google Scholar
  6. 6.
    Sun, Z.N., Tan, T.N., Wang, Y.H., Li, S.Z.: Ordinal Palmprint Representation for Personal Identification. In: Proc. of CVPR 2005, vol. 1, pp. 279–284 (2005)Google Scholar
  7. 7.
    Chen, H.F., Belhumeur, P.N., Jacobs, D.W.: In Search of Illumination Invariants. In: Proc. of CVPR 2000, vol. I, pp. 254–261 (2000)Google Scholar
  8. 8.
    Sun, Z.N., Tan, T.N., Wang, Y.H.: Robust Direction Estimation of Graident Vector Field for Iris Recognition. In: Proc. of ICPR 2004, vol. 2, pp. 783–786 (2004)Google Scholar
  9. 9.
    Sun, Z.N., Tan, T.N., Qiu, X.C.: Graph Matching Iris Image Blocks with Local Binary Pattern. In: Zhang, D., Jain, A.K. (eds.) Advances in Biometrics. LNCS, vol. 3832, pp. 366–372. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  10. 10.
    Lowe, D.G.: Distinctive Image Features from Scale-Invariant Keypoints. International Journal of Computer Vision (IJCV) 60, 90–110 (2004)CrossRefGoogle Scholar
  11. 11.
    Dalal, N., Triggs, B.: Histograms of Oriented Gradients for Human Detection. In: Proc.of CVPR 2005, vol. 1, pp. 863–886 (2005)Google Scholar
  12. 12.
  13. 13.
    CASIA Palmprint Database,
  14. 14.
    Daugman, J., Williams, G.: A Proposed Standard for Biometric Decidability. In: Proc. CardTech/SecureTech Conference, Atlanta, GA, pp. 223–234 (1996)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Yufei Han
    • 1
  • Tieniu Tan
    • 1
  • Zhenan Sun
    • 1
  1. 1.Center for Biometrics and Security Research, National Labrotory of Pattern Recognition,Institue of Automation, Chinese Acdamey of Sciences, P.O. Box 2728, Beijing, 100080P.R. China

Personalised recommendations