Advertisement

Automatic Online Signature Verification Using HMMs with User-Dependent Structure

  • J. M. Pascual-Gaspar
  • V. Cardeñoso-Payo
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4642)

Abstract

A novel strategy for Automatic online Signature Verification based on hidden Markov models (HMM) with user-dependent structure is presented in this work. Under this approach, the number of states and Gaussians giving the optimal prediction results are independently selected for each user. With this simple strategy just three genuine signatures could be used for training, with an EER under 2.5% obtained for the basic set of raw signature parameters provided by the acquisition device. This results increment by a factor of six the accuracy obtained with the typical approach in which claim-independent structure is used for the HMMs.

Keywords

Hide Markov Model Handwriting Recognition Hide Markov Model Model Online Signature Genuine Signature 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Plamondon, R., Srihari, S.N.: On-line and off-line handwriting recognition: A comprehensive survey. Transactions on pattern analysis and machine intelligence 22(1), 63–84 (2000)CrossRefGoogle Scholar
  2. 2.
    Rabiner, L.R.: A tutorial on hidden markov models and selected application in speech recognition. Proceedings of IEEE 77(2), 257–286 (1989)CrossRefGoogle Scholar
  3. 3.
    Hu, J., Brown, M.K., Turin, W.: Hmm based on-line handwriting recognition. IEEE Trans. Pattern Anal. Mach. Intell. 18(10), 1039–1045 (1996)CrossRefGoogle Scholar
  4. 4.
    Fierrez-Aguilar, J.: Adapted Fusion Schemes for Multimodal Biometric Authentication. PhD thesis, Esc. Técnica Superior de Ing. de Telecomunicación (2006)Google Scholar
  5. 5.
    Yang, L., Widjaja, B.K., Prasad, R.: Application of hidden markov models for signature verification. Pattern Recognition 28(2), 161–170 (1995)CrossRefGoogle Scholar
  6. 6.
    Nelson, W., Turin, W., Hastie, T.: Statistical methods for on-line signature verification. IJPRAI 8(3), 749–770 (1994)Google Scholar
  7. 7.
    Kashi, R.S., Hu, J., Nelson, W.L., Turin, W.: On-line handwritten signature verification using hidden markov model features. Document Analysis and Recognition 2 (1997)Google Scholar
  8. 8.
    Nalwa, V.S.: Automatic on-line signature verification. Proceedings of the IEEE 85(2), 215–239 (1997)CrossRefGoogle Scholar
  9. 9.
    Lecce, V.D., Dimauro, G., Guerriero, A., Impedovo, S., Pirlo, G., Salzo, A.: A multi-expert system for dynamic signature verification. In: Kittler, J., Roli, F. (eds.) MCS 2000. LNCS, vol. 1857, pp. 320–329. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  10. 10.
    Jain, A., Griess, F., Connell, S.: On-line signature verification. Pattern Recognition 35(12), 2963–2972 (2002)zbMATHCrossRefGoogle Scholar
  11. 11.
    Igarza, J.J., Goirizelaia, I., Espinosa, K., Hernáez, I., Méndez, R., Sánchez, J.: Online handwritten signature verification using hidden markov models. In: Sanfeliu, A., Ruiz-Shulcloper, J. (eds.) CIARP 2003. LNCS, vol. 2905, pp. 391–399. Springer, Heidelberg (2003)Google Scholar
  12. 12.
    Ortega-Garcia, J., Fierrez-Aguilar, J., Martin-Reillo, J., Gonzalez-Rodriguez, J.: Complete signal modeling and score normalization for function-based dynamic signature verification. In: Kittler, J., Nixon, M.S. (eds.) AVBPA 2003. LNCS, vol. 2688, pp. 658–667. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  13. 13.
    Lei, H., Palla, S., Govindaraju, V.: Er2: An intuitive similarity measure for on-line signature verification. In: IWFHR 2004. Proceedings of the Ninth International Workshop on Frontiers in Handwriting Recognition, Washington, DC, USA, pp. 191–195. IEEE Computer Society Press, Los Alamitos (2004)Google Scholar
  14. 14.
    Fierrez-Aguilar, J., Nanni, L., Lopez-Peñalba, J., Ortega-Garcia, J., Maltoni, D.: An on-line signature verification system based on fusion of local and global information. In: Kanade, T., Jain, A., Ratha, N.K. (eds.) AVBPA 2005. LNCS, vol. 3546, pp. 523–532. Springer, Heidelberg (2005)Google Scholar
  15. 15.
    Fierrez-Aguilar, J., Krawczyk, S., Ortega-Garcia, J., Jain, A.K.: Fusion of local and regional approaches for on-line signature verification. In: Li, S.Z., Sun, Z., Tan, T., Pankanti, S., Chollet, G., Zhang, D. (eds.) IWBRS 2005. LNCS, vol. 3781, pp. 188–196. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  16. 16.
    Ortega, J., Fierrez, J., Simon, D., Gonzalez, J., Hernaez, I., Igarza, J.J., Vivaracho, C., Escudero, D., Moro, Q.: Mcyt baseline corpus: a bimodal biometric database. IEEE Proc. Visual Image Signal Processing 150(6), 395–401 (2003)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • J. M. Pascual-Gaspar
    • 1
  • V. Cardeñoso-Payo
    • 1
  1. 1.ECA-SIMM, Dpto. Informática, Universidad de Valladolid, Campus Miguel Delibes s/n, 47011 ValladolidSpain

Personalised recommendations