The Effect of Fungal Secondary Metabolites on Bacterial and Fungal Pathogens

  • N. Mathivanan
  • V. R. Prabavathy
  • V. R. Vijayanandraj
Part of the Soil Biology book series (SOILBIOL, volume 14)

Fungi are an extremely diverse group of organisms, with about 230,000 species distributed widely essentially in every ecosystem. Among them, only limited species are considered to be effective biocontrol agents. The fungal antagonists restrict the growth of plant pathogens by the three suggested mechanisms: antibiosis, competition and parasitism. Besides, they also induce the defense responses in host plants, termed “induced systemic resistance” (van Loon et al. 1998). Among the abovementioned mechanisms, antibiosis is considered the most important, in which the antagonists produce an array of secondary metabolites such as antibiotics and toxin, which contribute to the antagonistic activity of fungal biocontrol agents against plant pathogens. Antagonistic strains belonging to the Trichoderma and Fusarium genera were able to produce various secondary metabolites which can play a role in the mechanism of their biological activity ( Production of antimicrobial secondary metabolites has been reported in many fungal biocontrol agents (Gottlieb and Shaw 1970; Fries 1973; Hutchinson 1973; Sivasithamparam and Ghisalberti 1998; Vyas and Mathur 2002). In this review, we highlight the secondary metabolites of selected fungal biocontrol agents and their involvement in the control of plant pathogens.


Culture Filtrate Trichoderma Harzianum Trichoderma Viride Antifungal Metabolite Fungal Secondary Metabolite 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abe N, Yamamoto K, Hirota A (2000) Novel fungal metabolites, demethylsorbicillin and oxosorbicillinol, isolated from Trichoderma sp. USF-2690. Biosci Biotechnol Biochem 64:620–622PubMedCrossRefGoogle Scholar
  2. Al-Heeti MB, Sinclair JB (1985) Inhibition of sporogenesis of Phytophthora megasperma f sp. glycinea by 18 isolates of Trichothecium roseum. Phytopthology 75:1327Google Scholar
  3. Altomare C, Perrone G, Zonno MC, Evidente A, Pengue R, Fanti F, Polonelli L (2000) Biological characterization of fusapyrone and deoxyfusapyrone, two bioactive secondary metabolites of Fusarium semitectum. J Nat Prod 63:1131–1135PubMedCrossRefGoogle Scholar
  4. Altomare C, Pengue R, Favilla M, Evidente A, Visconti A (2004). Structure-activity relationships of derivatives of fusapyrone, an antifungal metabolite of Fusarium semitectum. J Agric Food Chem 52:2997–3001PubMedCrossRefGoogle Scholar
  5. Amagata T, Minoura K, Numata A (1998) Cytotoxic metabolites produced by a fungal strain from a Sargassum algae. J Antibiot 51:432–434PubMedGoogle Scholar
  6. Amorim EPR, Pio-Ribeiro G, Menezes M Coelho RSB (1993) The pathogenicity and hyperparasitic action of Fusarium decemcellulare on Puccinia psidii in guava (Psidium guajava). Fitopatol Bras 18:226–229Google Scholar
  7. Askarova SA, Ioffe RI (1962). On the possibility of the use of the fungicidal preparation trichotecin in the control of cotton wilt. Antibiotiki 7:929–930PubMedGoogle Scholar
  8. Bailey BA, Bae H, Strem MD, Roberts DP, Thomas SE, Crozier J, Samuels GJ, Choi IY, Holmes KA (2006) Fungal and plant gene expression during the colonization of cacao seedlings by endophytic isolates of four Trichoderma species. Planta 224:1449–1464PubMedCrossRefGoogle Scholar
  9. Baker RA, Tatum JH, Nemec S (1990) Antimicrobial activity of napthoquinones from Fusaria. Mycopathologia 111:9–16PubMedCrossRefGoogle Scholar
  10. Bawden FC, Freeman GG (1952). The nature and behaviour of inhibitors of plant viruses produced by Trichothecium roseum Link. J Gen Microbiol 7:154–168PubMedGoogle Scholar
  11. Brain PW, McGowan, JC (1945) Viridin: a highly fungistatic substance produced by Trichoderma viride. Nature 156:144–145CrossRefGoogle Scholar
  12. Brewer D, Taylor A (1981). Trichoderma hamatum isolated from pasture soil. Mycopathologia 76:167–173PubMedCrossRefGoogle Scholar
  13. Brewer D, Feicht A, Taylor A, Keeping JW, Taha AA, Thaller V (1982) Production of experimental quantities of isocyanide metabolites of Trichoderma hamatum. Can. J Microbiol 28:1252–1260PubMedGoogle Scholar
  14. Calistru C, McLean M, Berjak P (1997) In vitro studies on the potential for biological control of Aspergillus flavus and Fusarium moniliforme by Trichoderma species. Mycopathologia 137:115–124PubMedCrossRefGoogle Scholar
  15. Chutrakul C, Peberdy JF (2005) Isolation and characterisation of a partial peptide synthetase gene from Trichoderma asperellum. FEMS Microbiol Lett 252:257–265PubMedCrossRefGoogle Scholar
  16. Claydon N, Allan M, Hanson JR, Avent AG (1987) Antifungal alkyl pyrones of Trichoderma harzianum. Trans Br Mycol Soc 88:505–513CrossRefGoogle Scholar
  17. Dennis L, Webster J (1971) Antagonistic properties of species group of Trichoderma III hyphal interactions. Trans Br Mycol Soc 57:363–369CrossRefGoogle Scholar
  18. Diekmann H (1970) Stoffwechselprodukte von Mikroorganismen. Arch Mikrobiol 73:65–76PubMedCrossRefGoogle Scholar
  19. DiPietro A, Lorito M, Hayes CK, Broadway RM, Harman GE (1993) Endochitinase from Gliocladium virens: Isolation, characterization and synergistic antifungal activity in combination with gliotoxin. Phytopathology 83:308–313CrossRefGoogle Scholar
  20. Dubey SC, Patel B (2001). Evaluation of fungal antagonists against Thanatephorus cucumeris causing web blight of urd and mung bean. Indian Phytopathol 54:206–209Google Scholar
  21. Elad Y (2000) Biological control of foliar pathogens by means of Trichoderma harzianum and potential modes of action. Crop Prot 19:709–714CrossRefGoogle Scholar
  22. Evidente A, Conti L, Altomare C, Bottalico A, Sindona G, Segre AL, Logrieco A (1994) Fusapyrone and deoxyfusapyrone, two antifungal alpha-pyrones from Fusarium semitectum. Nat Toxins 2:4–13PubMedCrossRefGoogle Scholar
  23. Evidente A, Amalfitano C, Pengue R Altomare C (1999) High performance liquid chromatography for the analysis of fusapyrone and deoxyfusapyrone, two antifungal alpha-pyrones from Fusarium semitectum. Nat Toxins 7:133–137PubMedCrossRefGoogle Scholar
  24. Fairbairn N, Pickard MA, Hiratuska Y (1983) Inhibition of Endocronartium harknesii spore germination by metabolites of Scytalidium uredinicola and the influence of growth medium on inhibitor production. Can J Bot 61:2147–2152Google Scholar
  25. Fedorinchik NS, Tarunina, TA, Tyutyunnikov MG, Kudryatseva KI (1975) Trichodermin-4, a new biological preparation for plant disease control. Plant Prot 3:67–72Google Scholar
  26. Forrer HR (1977) Der Einfluss von Stoffwechsel Produkten des Mycoparasiten Aphanocladium album auf die Teleutosporenbildung von Rostpilzen. Phytopathol Z 88:306–311CrossRefGoogle Scholar
  27. Freeman GG, Morrision RI (1949) The isolation and chemical properties of trichothecin, an antifungal substance from Trichothecium roseum Link. Biochem. 44:1–5Google Scholar
  28. Fries N (1973) Effects of volatile organic compounds on the growth and development of fungi. Trans Br Mycol Soc 60:1–21CrossRefGoogle Scholar
  29. Garrett MK, Robinson PM (1969) A stable inhibitor of spore germination produced by fungi. Arch Mikrobiol 67: 370–377PubMedCrossRefGoogle Scholar
  30. Ghisalberti EL, Rowland CY (1993). Antifungal metabolites from Trichoderma harzianum. J Nat Prod 56:1799–1804PubMedCrossRefGoogle Scholar
  31. Gill KS, Chahal SS (1988). Growth inhibition of Claviceps fusiformis with culture filtrate of Fusarium chlamydosporum. Plant Dis Res 3:64–65Google Scholar
  32. Godtfredsen WO, Vangedal S (1965) Trichodermin, a new sesquiterpene antibiotic. Acta Chem Scand 19:1088–1102PubMedCrossRefGoogle Scholar
  33. Goodman DM, Burpee, LL (1991) Biological control of dollar spot disease of creeping bentgrass. Phytopathology 81:1438–1446CrossRefGoogle Scholar
  34. Gottlieb D, Shaw PD (1970) Mechanism of action of antifungal antibiotics. Annu Rev Phytopathology 8:371–402CrossRefGoogle Scholar
  35. Gouramani GD (1995) Biological and chemical control of rice blast disease (Pyricularia oryzae) in north Greece. Cah Mediterr 15:61–68Google Scholar
  36. Govindasamy V, Balasubramanian R (1989) Biological control of groundnut rust, Puccinia arachidis by Trichoderma harzianum. Z Pflanzenkr Pflanzenschutz 96:337–345Google Scholar
  37. Graeme-Cook KA, Faull JL (1991) Effect of ultraviolet-induced mutants of Trichoderma harzianum with altered antibiotic production on selected pathogens in vitro. Can J Microbiol 37:659–664PubMedCrossRefGoogle Scholar
  38. Hornok L, Walcz I (1983) Fusarium heterosporum, a highly specialized hyperparasite of Claviceps purpurea. Trans Br Mycol Soc 80: 377–380CrossRefGoogle Scholar
  39. Howell CR, Hanson LE, Stipanovic RD, Puckhaber LE (2000) Induction of terpenoid synthesis in cotton roots and control of Rhizoctonia solani by seed treatment with Trichoderma virens. Phytopathology 90:248–252PubMedCrossRefGoogle Scholar
  40. Howell CR, Stipanovic, RD (1983) Gliovirin, a new antibiotic from Gliocladium virens and its role in the biological control of Pythium ultimum. Can J Microbiol 29:321–324Google Scholar
  41. Huang HC, Kokko EG (1993) Trichothecium roseum, a mycoparasite of Sclerotinia sclerotiorum. Can J Bot 71:1631–1638CrossRefGoogle Scholar
  42. Huang Q, Tezuka Y, Hatanaka Y, Kikuchi T, Nishi A, Tubaki K (1996) Studies on metabolites of mycoparasitic fungi. V. Ion-spray ionization mass spectrometric analysis of trichokonin-II, a peptaibol mixture obtained from the culture broth of Trichoderma koningii. Chem Pharm Bull (Tokyo) 44:590–593PubMedGoogle Scholar
  43. Humphris SN, Bruce A, Buultjens E, Wheatley RE (2002) The effects of volatile microbial secondary metabolites on protein synthesis in Serpula lacrymans. FEMS Microbiol Lett 210:215–219PubMedCrossRefGoogle Scholar
  44. Hutchinson SA (1973) Biological activities of volatile fungal metabolites. Annu Rev Phytopathol 11:223–246CrossRefGoogle Scholar
  45. Iida A, Sanekata M, Wada S, Fujita T, Tanaka H, Enoki A, Fuse G, Kanai M, Asami K (1995) Fungal metabolites. XVIII. New membrane-modifying peptides, trichorozins I-IV, from the fungus Trichoderma harzianum. Chem Pharm Bull (Tokyo) 43:392–397PubMedGoogle Scholar
  46. Jayapal Gowdu B (1986) Studies on some biological aspects of fungal associates on groundnut rust, Puccinia arachidis Speg. PhD thesis, University of Madras, ChennaiGoogle Scholar
  47. Jindal KK, Thind BS (1990) Microflora of cowpea seeds and its significance in the biological control of seed borne infection of Xanthomonas campestris pv. vignicola. Seed Sci Technol 18:393–403Google Scholar
  48. Kapooria RG, Sinha S (1969) Phylloplane mycoflora of pearl millet and its influence on the development of Puccinia pennisetti. Trans Br Mycol Soc 53:153–155CrossRefGoogle Scholar
  49. Kashyap U (1978) Biological control of some fungal diseases of tomatoes by phyllosphere microorganisms. Indian J Mycol Plantpathol 8:37Google Scholar
  50. Lacicowa B, Pieta D (1996) The efficiency of microbiological dressing of pea seeds (Pisum sativum L.) against pathogenic soil-borne fungi. Rocz Nauk Roln Ser E 25:15–21Google Scholar
  51. Landreau A, Pouchus YF, Sallenave-Namont C, Biard JF, Boumard MC, Robiou du PT, Mondeguer F, Goulard C, Verbist JF (2002) Combined use of LC/MS and a biological test for rapid identification of marine mycotoxins produced by Trichoderma koningii. J Microbiol Methods 48:181–194PubMedCrossRefGoogle Scholar
  52. Leinhos GME, Buchenauer H (1992) Inhibition of rust diseases of cereals by metabolic products of Verticillium chlamydosporium. J Phytopathol 136:177–193CrossRefGoogle Scholar
  53. Liu PG, Yang Q (2005) Identification of genes with a biocontrol function in Trichoderma harzianum mycelium using the expressed sequence tag approach. Res Microbiol 156:416–423PubMedCrossRefGoogle Scholar
  54. Machida, KM, Trifonov LS, Ayer WA, Lu ZX, Laroche A, Huang HC, Cheng KJ (2001) 3(2H)-Benzofuranones and chromanes from liquid cultures of the mycoparasitic fungus Coniothyrium minitans. Phytochemistry 58:173–177PubMedCrossRefGoogle Scholar
  55. Macias FA, Varela RM, Simonet AM, Cutler HG, Cutler SJ, Eden MA, Hill RA (2000) Bioactive carotanes from Trichoderma virens. J Nat Prod 63:1197–2000.PubMedCrossRefGoogle Scholar
  56. Makkonen R, Pohjakallio O (1960) On the parasitic attacking the sclerotia of some fungi pathogenic to higher plants and on the resistance of these studies to their parasites. Acta Agric Scand 10:105–126CrossRefGoogle Scholar
  57. Mandal S, Srivatava KD, Rashmi A, Singh DV, Mandal S, Aggarwal R (1999). Mycoparasitic action of some fungi on spot blotch pathogen (Drechslera sorokiniana) of wheat. Indian Phytopathol 52:39–43Google Scholar
  58. Mathivanan N (1995) Studies on extracellular chitinase and secondary metabolites produced by Fusarium chlamydosporum, an antagonist to Puccinia arachidis, the rust pathogen of groundnut. PhD thesis, University of Madras, ChennaiGoogle Scholar
  59. Mathivanan N (2000) Chitinase and β-1, 3 glucanase of Fusarium solani: effect of crude enzymes on Puccinia arachidis. J Mycol Plant Pathol 30:327–330Google Scholar
  60. Mathivanan N, Murugesan K (1999) Isolation and purification of an antifungal metabolite from Fusarium chlamydosporum, a mycoparasite to Puccinia arachidis, the rust pathogen of groundnut. Indian J Exp Biol 37:98–101Google Scholar
  61. Mathivanan N, Murugesan K (2000) Fusarium chlamydosporum, a potent biocontrol agent to groundnut rust, Puccinia arachidis. Z Pflanzenkr Pflanzenschutz 107:225–234Google Scholar
  62. Mathivanan N, Prbavathy VR, Murugesan K (2004) Biocontrol potential of microorganisms—an overview: focus on Trichoderma as biofungicide for the management of plant diseases. In: Mayee CD, Manoharachary C, Tilak KVBR, Mukadam KS Deshpande J (eds) Biotechnological approaches for the integrated management of crop diseases. Daya, Delhi, pp 88–109Google Scholar
  63. McQuilken MP, Gemmell J, Hill RA, Whipps JM (2003) Production of macrosphelide A by the mycoparasite Coniothyrium minitans. FEMS Microbiol Lett 219:27–31PubMedCrossRefGoogle Scholar
  64. Mischke S (1997) A quantitative bioassay for extracellular metabolites that antagonize growth of filamentous fungi, and its use with biocontrol fungi. Mycopathologia. 137:45–52PubMedCrossRefGoogle Scholar
  65. Monaco C, Perello A, Rollan MC (1994). In vitro tests of the antagonistic behavior of Trichoderma spp. against pathogenic species of the horticultural region of La Plata, Argentina. Microbiologia 10:423–428PubMedGoogle Scholar
  66. Mukherjee M, Horwitz BA, Sherkhane PD, Hadar R, Mukherjee PK (2006) A secondary metabolite biosynthesis cluster in Trichoderma virens: evidence from analysis of genes underexpressed in a mutant defective in morphogenesis and antibiotic production. Curr Genet 50:193–202PubMedCrossRefGoogle Scholar
  67. Mukherjee PK, Raghu K (1997) Effect of temperature on antagonistic and biocontrol potential of Trichoderma sp. on Sclerotium rolfsii. Mycopathologia. 139:151–155PubMedCrossRefGoogle Scholar
  68. Navi SS, Singh SD (1993) Fusarium longipes—a mycoparasite of Sclerospora graminicola on pearl millet. Indian Phytopathol 46:365–368Google Scholar
  69. Nicoletti R, De Stefano M, De Stefano S, Trincone A, Marziano F (2004) Antagonism against Rhizoctonia solani and fungitoxic metabolite production by some Penicillium isolates. Mycopathologia 158:465–474PubMedCrossRefGoogle Scholar
  70. Papavizas GC, Lewis JA, Abd-El Moity TH (1982) Evaluation of new biotypes of Trichoderma harzianum for tolerence to benomyl and enhanced biocontrol capabilities. Phytopathology 72:126–132CrossRefGoogle Scholar
  71. Perez LM, Besoain X, Reyes M, Pardo G, Montealegre J (2002) The expression of extracellular fungal cell wall hydrolytic enzymes in different Trichoderma harzianum isolates correlates with their ability to control Pyrenochaeta lycopersici. Biol Res 35:401–410PubMedCrossRefGoogle Scholar
  72. Pohjakallio O, Makkonen R (1957) On the resistance of the sclerotia of some phytopathological fungi against their parasites. Acta Chem Fenn 30:222Google Scholar
  73. Rao VP, Thakur RP (1988) Fusarium semitectum var. majus—a potential biocontrol agent of ergot (Claviceps fusiformis) of pearlmillet. Indian Phytopath 41:567–574Google Scholar
  74. Reithner B, Brunner K, Schuhmacher R, Peissl I, Seidl V, Krska R, Zeilinger S (2005) The G protein alpha subunit Tga1 of Trichoderma atroviride is involved in chitinase formation and differential production of antifungal metabolites. Fungal Genet Biol 42:749–760PubMedCrossRefGoogle Scholar
  75. Robinson PM, Garrett MK (1969) Identification of volatile sporostatic factors from cultures of Fusarium oxysporum. Trans Br Mycol Soc 52:293–299CrossRefGoogle Scholar
  76. Rod J (1984) Antagonistic effects of some fungi on fungal pathogens causing storage rot of onion (Allium cepa L.) Ceska Mykol 38:235–239Google Scholar
  77. Roy AK (1977) Parasitic activity of Trichoderma viride on sheath blight fungus of rice. J Plant Dis Prot 84:675–683Google Scholar
  78. Sawai K, Okuno, T, Terada Y, Harada Y, Sawamura K, Sasaki H, Takao S (1981) Isolation and properties of two antifungal substances from Fusarium solani. Agric Biol Chem 45:1223–1228Google Scholar
  79. Simon A, Dunlop RW, Ghissalberti EL, Sivasithamparam (1988) Trichoderma koningii produces a pyrone compound with antibiotic properties. Soil Biol Biochem 20:263–264CrossRefGoogle Scholar
  80. Singh D (1991) Biocontrol of Sclerotina sclerotiorum (Lib.) de Bary by Trichoderma harzianum. Trop Pest Manag 37:374–378CrossRefGoogle Scholar
  81. Sivasithamparam K, Ghisalberti EL (1998) In: Kubicek CP, Harman GE (eds) Trichoderma and Gliocladium, vol 1. Taylor and Francis, London, pp 139–191Google Scholar
  82. Stipanovic RD, Howell CR (1982) The structure of gliovirin, a new antibiotic from Gliocladium virens. J Antibiot 35:1326–1330PubMedGoogle Scholar
  83. Szekeres A, Leitgeb B, Kredics L, Antal Z, Hatvani L, Manczinger L, Vagvolgyi C (2005) Peptaibols and related peptaibiotics of Trichoderma—a review. Acta Microbiol Immunol Hung 52:137–168PubMedCrossRefGoogle Scholar
  84. Upadhyay JP, Mukhopadhyay AN (1983) Effect of non-volatile and volatile antibiotics of Trichoderma harzianum on growth of Sclerotium rolfsii. Indian J Mycol Plant Pathol 13:232–233Google Scholar
  85. Urbasch I (1985) Antagonistische wirkung von Trichothecium roseum (Pers.) Link ex Gray auf Pestalotia funereal. Desm Phytopathol Z 113:343–347Google Scholar
  86. van Loon LC, Bakker PAHM, Pieterse CMJ (1998) Systemic resistance induced by rhizosphere bacteria. Annu Rev Phytopathol 36:453–483PubMedCrossRefGoogle Scholar
  87. Vanneste JL, Hill RA, Kay SJ, Farrel RL, Holland PT (2002) Biological control of sapstain fungi with natural products and biological control agents: a review of the work carried out in New Zealand. Mycol Res 106:228–232CrossRefGoogle Scholar
  88. Vinale F, Marra R, Scala F, Ghisalberti EL, Lorito M, Sivasithamparam K (2006) Major secondary metabolites produced by two commercial Trichoderma strains active against different phytopathogens. Lett Appl Microbiol 43:143–148PubMedCrossRefGoogle Scholar
  89. Vyas RK, Mathur K (2002) Trichoderma spp. in cumin rhizosphere and their potential in suppression of wilt. Indian Phytopathol 55:455–457Google Scholar
  90. Wada S, Iida A, Akimoto N, Kanai M, Toyama N, Fujita T (1995) Fungal metabolites. XIX. Structural elucidation of channel-forming peptides, trichorovins-I-XIV, from the fungus Trichoderma viride. Chem Pharm Bull (Tokyo) 43:910–915PubMedGoogle Scholar
  91. Wei X, Yang F, Straney DC (2005) Multiple non-ribosomal peptide synthetase genes determine peptaibol synthesis in Trichoderma virens. Can J Microbiol 51:423–429PubMedCrossRefGoogle Scholar
  92. Weindling R (1941) Experimental consideration of the mould toxins of Gliocladium and Trichoderma. Phytopathology 31:991–1003Google Scholar
  93. Weindling R, Emerson OH (1936) The isolation of a toxic substance from the culture of a Trichoderma. Phytopathology 26:1068–1070Google Scholar
  94. Wiest A, Crzegorski D, Xu BW, Goulard C, Rebuffat S, Ebbole DJ, Bodo B, Kenerley C (2002) Identification of peptaibols from Trichoderma virens and cloning of a peptaibol synthetase. J Biol Chem 277:20862–20868CrossRefGoogle Scholar
  95. Xiao-Yan S, Qing-Tao S, Shu-Tao X, Xiu-Lan C, Cai-Yun S, Yu-Zhong Z (2006) Broad-spectrum antimicrobial activity and high stability of trichokonins from Trichoderma koningii SMF2 against plant pathogens. FEMS Microbiol Lett 260:119–125.PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • N. Mathivanan
    • 1
  • V. R. Prabavathy
  • V. R. Vijayanandraj
  1. 1.Biocontrol and Microbial Metabolites Lab, Centre for Advanced Studies in BotanyUniversity of MadrasChennaiIndia

Personalised recommendations