Skip to main content

The Effect of Fungal Secondary Metabolites on Bacterial and Fungal Pathogens

  • Chapter
Secondary Metabolites in Soil Ecology

Part of the book series: Soil Biology ((SOILBIOL,volume 14))

Fungi are an extremely diverse group of organisms, with about 230,000 species distributed widely essentially in every ecosystem. Among them, only limited species are considered to be effective biocontrol agents. The fungal antagonists restrict the growth of plant pathogens by the three suggested mechanisms: antibiosis, competition and parasitism. Besides, they also induce the defense responses in host plants, termed “induced systemic resistance” (van Loon et al. 1998). Among the abovementioned mechanisms, antibiosis is considered the most important, in which the antagonists produce an array of secondary metabolites such as antibiotics and toxin, which contribute to the antagonistic activity of fungal biocontrol agents against plant pathogens. Antagonistic strains belonging to the Trichoderma and Fusarium genera were able to produce various secondary metabolites which can play a role in the mechanism of their biological activity (http://www.item.ba.cnr.it/biopesti.htm). Production of antimicrobial secondary metabolites has been reported in many fungal biocontrol agents (Gottlieb and Shaw 1970; Fries 1973; Hutchinson 1973; Sivasithamparam and Ghisalberti 1998; Vyas and Mathur 2002). In this review, we highlight the secondary metabolites of selected fungal biocontrol agents and their involvement in the control of plant pathogens.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abe N, Yamamoto K, Hirota A (2000) Novel fungal metabolites, demethylsorbicillin and oxosorbicillinol, isolated from Trichoderma sp. USF-2690. Biosci Biotechnol Biochem 64:620–622

    Article  PubMed  CAS  Google Scholar 

  • Al-Heeti MB, Sinclair JB (1985) Inhibition of sporogenesis of Phytophthora megasperma f sp. glycinea by 18 isolates of Trichothecium roseum. Phytopthology 75:1327

    Google Scholar 

  • Altomare C, Perrone G, Zonno MC, Evidente A, Pengue R, Fanti F, Polonelli L (2000) Biological characterization of fusapyrone and deoxyfusapyrone, two bioactive secondary metabolites of Fusarium semitectum. J Nat Prod 63:1131–1135

    Article  PubMed  CAS  Google Scholar 

  • Altomare C, Pengue R, Favilla M, Evidente A, Visconti A (2004). Structure-activity relationships of derivatives of fusapyrone, an antifungal metabolite of Fusarium semitectum. J Agric Food Chem 52:2997–3001

    Article  PubMed  CAS  Google Scholar 

  • Amagata T, Minoura K, Numata A (1998) Cytotoxic metabolites produced by a fungal strain from a Sargassum algae. J Antibiot 51:432–434

    PubMed  CAS  Google Scholar 

  • Amorim EPR, Pio-Ribeiro G, Menezes M Coelho RSB (1993) The pathogenicity and hyperparasitic action of Fusarium decemcellulare on Puccinia psidii in guava (Psidium guajava). Fitopatol Bras 18:226–229

    Google Scholar 

  • Askarova SA, Ioffe RI (1962). On the possibility of the use of the fungicidal preparation trichotecin in the control of cotton wilt. Antibiotiki 7:929–930

    PubMed  CAS  Google Scholar 

  • Bailey BA, Bae H, Strem MD, Roberts DP, Thomas SE, Crozier J, Samuels GJ, Choi IY, Holmes KA (2006) Fungal and plant gene expression during the colonization of cacao seedlings by endophytic isolates of four Trichoderma species. Planta 224:1449–1464

    Article  PubMed  CAS  Google Scholar 

  • Baker RA, Tatum JH, Nemec S (1990) Antimicrobial activity of napthoquinones from Fusaria. Mycopathologia 111:9–16

    Article  PubMed  CAS  Google Scholar 

  • Bawden FC, Freeman GG (1952). The nature and behaviour of inhibitors of plant viruses produced by Trichothecium roseum Link. J Gen Microbiol 7:154–168

    PubMed  CAS  Google Scholar 

  • Brain PW, McGowan, JC (1945) Viridin: a highly fungistatic substance produced by Trichoderma viride. Nature 156:144–145

    Article  Google Scholar 

  • Brewer D, Taylor A (1981). Trichoderma hamatum isolated from pasture soil. Mycopathologia 76:167–173

    Article  PubMed  CAS  Google Scholar 

  • Brewer D, Feicht A, Taylor A, Keeping JW, Taha AA, Thaller V (1982) Production of experimental quantities of isocyanide metabolites of Trichoderma hamatum. Can. J Microbiol 28:1252–1260

    PubMed  CAS  Google Scholar 

  • Calistru C, McLean M, Berjak P (1997) In vitro studies on the potential for biological control of Aspergillus flavus and Fusarium moniliforme by Trichoderma species. Mycopathologia 137:115–124

    Article  PubMed  CAS  Google Scholar 

  • Chutrakul C, Peberdy JF (2005) Isolation and characterisation of a partial peptide synthetase gene from Trichoderma asperellum. FEMS Microbiol Lett 252:257–265

    Article  PubMed  CAS  Google Scholar 

  • Claydon N, Allan M, Hanson JR, Avent AG (1987) Antifungal alkyl pyrones of Trichoderma harzianum. Trans Br Mycol Soc 88:505–513

    Article  Google Scholar 

  • Dennis L, Webster J (1971) Antagonistic properties of species group of Trichoderma III hyphal interactions. Trans Br Mycol Soc 57:363–369

    Article  Google Scholar 

  • Diekmann H (1970) Stoffwechselprodukte von Mikroorganismen. Arch Mikrobiol 73:65–76

    Article  PubMed  CAS  Google Scholar 

  • DiPietro A, Lorito M, Hayes CK, Broadway RM, Harman GE (1993) Endochitinase from Gliocladium virens: Isolation, characterization and synergistic antifungal activity in combination with gliotoxin. Phytopathology 83:308–313

    Article  CAS  Google Scholar 

  • Dubey SC, Patel B (2001). Evaluation of fungal antagonists against Thanatephorus cucumeris causing web blight of urd and mung bean. Indian Phytopathol 54:206–209

    Google Scholar 

  • Elad Y (2000) Biological control of foliar pathogens by means of Trichoderma harzianum and potential modes of action. Crop Prot 19:709–714

    Article  Google Scholar 

  • Evidente A, Conti L, Altomare C, Bottalico A, Sindona G, Segre AL, Logrieco A (1994) Fusapyrone and deoxyfusapyrone, two antifungal alpha-pyrones from Fusarium semitectum. Nat Toxins 2:4–13

    Article  PubMed  CAS  Google Scholar 

  • Evidente A, Amalfitano C, Pengue R Altomare C (1999) High performance liquid chromatography for the analysis of fusapyrone and deoxyfusapyrone, two antifungal alpha-pyrones from Fusarium semitectum. Nat Toxins 7:133–137

    Article  PubMed  CAS  Google Scholar 

  • Fairbairn N, Pickard MA, Hiratuska Y (1983) Inhibition of Endocronartium harknesii spore germination by metabolites of Scytalidium uredinicola and the influence of growth medium on inhibitor production. Can J Bot 61:2147–2152

    Google Scholar 

  • Fedorinchik NS, Tarunina, TA, Tyutyunnikov MG, Kudryatseva KI (1975) Trichodermin-4, a new biological preparation for plant disease control. Plant Prot 3:67–72

    Google Scholar 

  • Forrer HR (1977) Der Einfluss von Stoffwechsel Produkten des Mycoparasiten Aphanocladium album auf die Teleutosporenbildung von Rostpilzen. Phytopathol Z 88:306–311

    Article  Google Scholar 

  • Freeman GG, Morrision RI (1949) The isolation and chemical properties of trichothecin, an antifungal substance from Trichothecium roseum Link. Biochem. 44:1–5

    CAS  Google Scholar 

  • Fries N (1973) Effects of volatile organic compounds on the growth and development of fungi. Trans Br Mycol Soc 60:1–21

    Article  CAS  Google Scholar 

  • Garrett MK, Robinson PM (1969) A stable inhibitor of spore germination produced by fungi. Arch Mikrobiol 67: 370–377

    Article  PubMed  CAS  Google Scholar 

  • Ghisalberti EL, Rowland CY (1993). Antifungal metabolites from Trichoderma harzianum. J Nat Prod 56:1799–1804

    Article  PubMed  CAS  Google Scholar 

  • Gill KS, Chahal SS (1988). Growth inhibition of Claviceps fusiformis with culture filtrate of Fusarium chlamydosporum. Plant Dis Res 3:64–65

    Google Scholar 

  • Godtfredsen WO, Vangedal S (1965) Trichodermin, a new sesquiterpene antibiotic. Acta Chem Scand 19:1088–1102

    Article  PubMed  CAS  Google Scholar 

  • Goodman DM, Burpee, LL (1991) Biological control of dollar spot disease of creeping bentgrass. Phytopathology 81:1438–1446

    Article  Google Scholar 

  • Gottlieb D, Shaw PD (1970) Mechanism of action of antifungal antibiotics. Annu Rev Phytopathology 8:371–402

    Article  CAS  Google Scholar 

  • Gouramani GD (1995) Biological and chemical control of rice blast disease (Pyricularia oryzae) in north Greece. Cah Mediterr 15:61–68

    Google Scholar 

  • Govindasamy V, Balasubramanian R (1989) Biological control of groundnut rust, Puccinia arachidis by Trichoderma harzianum. Z Pflanzenkr Pflanzenschutz 96:337–345

    Google Scholar 

  • Graeme-Cook KA, Faull JL (1991) Effect of ultraviolet-induced mutants of Trichoderma harzianum with altered antibiotic production on selected pathogens in vitro. Can J Microbiol 37:659–664

    Article  PubMed  CAS  Google Scholar 

  • Hornok L, Walcz I (1983) Fusarium heterosporum, a highly specialized hyperparasite of Claviceps purpurea. Trans Br Mycol Soc 80: 377–380

    Article  Google Scholar 

  • Howell CR, Hanson LE, Stipanovic RD, Puckhaber LE (2000) Induction of terpenoid synthesis in cotton roots and control of Rhizoctonia solani by seed treatment with Trichoderma virens. Phytopathology 90:248–252

    Article  PubMed  CAS  Google Scholar 

  • Howell CR, Stipanovic, RD (1983) Gliovirin, a new antibiotic from Gliocladium virens and its role in the biological control of Pythium ultimum. Can J Microbiol 29:321–324

    CAS  Google Scholar 

  • Huang HC, Kokko EG (1993) Trichothecium roseum, a mycoparasite of Sclerotinia sclerotiorum. Can J Bot 71:1631–1638

    Article  Google Scholar 

  • Huang Q, Tezuka Y, Hatanaka Y, Kikuchi T, Nishi A, Tubaki K (1996) Studies on metabolites of mycoparasitic fungi. V. Ion-spray ionization mass spectrometric analysis of trichokonin-II, a peptaibol mixture obtained from the culture broth of Trichoderma koningii. Chem Pharm Bull (Tokyo) 44:590–593

    PubMed  CAS  Google Scholar 

  • Humphris SN, Bruce A, Buultjens E, Wheatley RE (2002) The effects of volatile microbial secondary metabolites on protein synthesis in Serpula lacrymans. FEMS Microbiol Lett 210:215–219

    Article  PubMed  CAS  Google Scholar 

  • Hutchinson SA (1973) Biological activities of volatile fungal metabolites. Annu Rev Phytopathol 11:223–246

    Article  CAS  Google Scholar 

  • Iida A, Sanekata M, Wada S, Fujita T, Tanaka H, Enoki A, Fuse G, Kanai M, Asami K (1995) Fungal metabolites. XVIII. New membrane-modifying peptides, trichorozins I-IV, from the fungus Trichoderma harzianum. Chem Pharm Bull (Tokyo) 43:392–397

    PubMed  CAS  Google Scholar 

  • Jayapal Gowdu B (1986) Studies on some biological aspects of fungal associates on groundnut rust, Puccinia arachidis Speg. PhD thesis, University of Madras, Chennai

    Google Scholar 

  • Jindal KK, Thind BS (1990) Microflora of cowpea seeds and its significance in the biological control of seed borne infection of Xanthomonas campestris pv. vignicola. Seed Sci Technol 18:393–403

    Google Scholar 

  • Kapooria RG, Sinha S (1969) Phylloplane mycoflora of pearl millet and its influence on the development of Puccinia pennisetti. Trans Br Mycol Soc 53:153–155

    Article  Google Scholar 

  • Kashyap U (1978) Biological control of some fungal diseases of tomatoes by phyllosphere microorganisms. Indian J Mycol Plantpathol 8:37

    Google Scholar 

  • Lacicowa B, Pieta D (1996) The efficiency of microbiological dressing of pea seeds (Pisum sativum L.) against pathogenic soil-borne fungi. Rocz Nauk Roln Ser E 25:15–21

    Google Scholar 

  • Landreau A, Pouchus YF, Sallenave-Namont C, Biard JF, Boumard MC, Robiou du PT, Mondeguer F, Goulard C, Verbist JF (2002) Combined use of LC/MS and a biological test for rapid identification of marine mycotoxins produced by Trichoderma koningii. J Microbiol Methods 48:181–194

    Article  PubMed  CAS  Google Scholar 

  • Leinhos GME, Buchenauer H (1992) Inhibition of rust diseases of cereals by metabolic products of Verticillium chlamydosporium. J Phytopathol 136:177–193

    Article  CAS  Google Scholar 

  • Liu PG, Yang Q (2005) Identification of genes with a biocontrol function in Trichoderma harzianum mycelium using the expressed sequence tag approach. Res Microbiol 156:416–423

    Article  PubMed  CAS  Google Scholar 

  • Machida, KM, Trifonov LS, Ayer WA, Lu ZX, Laroche A, Huang HC, Cheng KJ (2001) 3(2H)-Benzofuranones and chromanes from liquid cultures of the mycoparasitic fungus Coniothyrium minitans. Phytochemistry 58:173–177

    Article  PubMed  CAS  Google Scholar 

  • Macias FA, Varela RM, Simonet AM, Cutler HG, Cutler SJ, Eden MA, Hill RA (2000) Bioactive carotanes from Trichoderma virens. J Nat Prod 63:1197–2000.

    Article  PubMed  CAS  Google Scholar 

  • Makkonen R, Pohjakallio O (1960) On the parasitic attacking the sclerotia of some fungi pathogenic to higher plants and on the resistance of these studies to their parasites. Acta Agric Scand 10:105–126

    Article  Google Scholar 

  • Mandal S, Srivatava KD, Rashmi A, Singh DV, Mandal S, Aggarwal R (1999). Mycoparasitic action of some fungi on spot blotch pathogen (Drechslera sorokiniana) of wheat. Indian Phytopathol 52:39–43

    Google Scholar 

  • Mathivanan N (1995) Studies on extracellular chitinase and secondary metabolites produced by Fusarium chlamydosporum, an antagonist to Puccinia arachidis, the rust pathogen of groundnut. PhD thesis, University of Madras, Chennai

    Google Scholar 

  • Mathivanan N (2000) Chitinase and β-1, 3 glucanase of Fusarium solani: effect of crude enzymes on Puccinia arachidis. J Mycol Plant Pathol 30:327–330

    CAS  Google Scholar 

  • Mathivanan N, Murugesan K (1999) Isolation and purification of an antifungal metabolite from Fusarium chlamydosporum, a mycoparasite to Puccinia arachidis, the rust pathogen of groundnut. Indian J Exp Biol 37:98–101

    CAS  Google Scholar 

  • Mathivanan N, Murugesan K (2000) Fusarium chlamydosporum, a potent biocontrol agent to groundnut rust, Puccinia arachidis. Z Pflanzenkr Pflanzenschutz 107:225–234

    Google Scholar 

  • Mathivanan N, Prbavathy VR, Murugesan K (2004) Biocontrol potential of microorganisms—an overview: focus on Trichoderma as biofungicide for the management of plant diseases. In: Mayee CD, Manoharachary C, Tilak KVBR, Mukadam KS Deshpande J (eds) Biotechnological approaches for the integrated management of crop diseases. Daya, Delhi, pp 88–109

    Google Scholar 

  • McQuilken MP, Gemmell J, Hill RA, Whipps JM (2003) Production of macrosphelide A by the mycoparasite Coniothyrium minitans. FEMS Microbiol Lett 219:27–31

    Article  PubMed  CAS  Google Scholar 

  • Mischke S (1997) A quantitative bioassay for extracellular metabolites that antagonize growth of filamentous fungi, and its use with biocontrol fungi. Mycopathologia. 137:45–52

    Article  PubMed  CAS  Google Scholar 

  • Monaco C, Perello A, Rollan MC (1994). In vitro tests of the antagonistic behavior of Trichoderma spp. against pathogenic species of the horticultural region of La Plata, Argentina. Microbiologia 10:423–428

    PubMed  CAS  Google Scholar 

  • Mukherjee M, Horwitz BA, Sherkhane PD, Hadar R, Mukherjee PK (2006) A secondary metabolite biosynthesis cluster in Trichoderma virens: evidence from analysis of genes underexpressed in a mutant defective in morphogenesis and antibiotic production. Curr Genet 50:193–202

    Article  PubMed  CAS  Google Scholar 

  • Mukherjee PK, Raghu K (1997) Effect of temperature on antagonistic and biocontrol potential of Trichoderma sp. on Sclerotium rolfsii. Mycopathologia. 139:151–155

    Article  PubMed  CAS  Google Scholar 

  • Navi SS, Singh SD (1993) Fusarium longipes—a mycoparasite of Sclerospora graminicola on pearl millet. Indian Phytopathol 46:365–368

    Google Scholar 

  • Nicoletti R, De Stefano M, De Stefano S, Trincone A, Marziano F (2004) Antagonism against Rhizoctonia solani and fungitoxic metabolite production by some Penicillium isolates. Mycopathologia 158:465–474

    Article  PubMed  CAS  Google Scholar 

  • Papavizas GC, Lewis JA, Abd-El Moity TH (1982) Evaluation of new biotypes of Trichoderma harzianum for tolerence to benomyl and enhanced biocontrol capabilities. Phytopathology 72:126–132

    Article  CAS  Google Scholar 

  • Perez LM, Besoain X, Reyes M, Pardo G, Montealegre J (2002) The expression of extracellular fungal cell wall hydrolytic enzymes in different Trichoderma harzianum isolates correlates with their ability to control Pyrenochaeta lycopersici. Biol Res 35:401–410

    Article  PubMed  CAS  Google Scholar 

  • Pohjakallio O, Makkonen R (1957) On the resistance of the sclerotia of some phytopathological fungi against their parasites. Acta Chem Fenn 30:222

    Google Scholar 

  • Rao VP, Thakur RP (1988) Fusarium semitectum var. majus—a potential biocontrol agent of ergot (Claviceps fusiformis) of pearlmillet. Indian Phytopath 41:567–574

    Google Scholar 

  • Reithner B, Brunner K, Schuhmacher R, Peissl I, Seidl V, Krska R, Zeilinger S (2005) The G protein alpha subunit Tga1 of Trichoderma atroviride is involved in chitinase formation and differential production of antifungal metabolites. Fungal Genet Biol 42:749–760

    Article  PubMed  CAS  Google Scholar 

  • Robinson PM, Garrett MK (1969) Identification of volatile sporostatic factors from cultures of Fusarium oxysporum. Trans Br Mycol Soc 52:293–299

    Article  CAS  Google Scholar 

  • Rod J (1984) Antagonistic effects of some fungi on fungal pathogens causing storage rot of onion (Allium cepa L.) Ceska Mykol 38:235–239

    Google Scholar 

  • Roy AK (1977) Parasitic activity of Trichoderma viride on sheath blight fungus of rice. J Plant Dis Prot 84:675–683

    Google Scholar 

  • Sawai K, Okuno, T, Terada Y, Harada Y, Sawamura K, Sasaki H, Takao S (1981) Isolation and properties of two antifungal substances from Fusarium solani. Agric Biol Chem 45:1223–1228

    CAS  Google Scholar 

  • Simon A, Dunlop RW, Ghissalberti EL, Sivasithamparam (1988) Trichoderma koningii produces a pyrone compound with antibiotic properties. Soil Biol Biochem 20:263–264

    Article  CAS  Google Scholar 

  • Singh D (1991) Biocontrol of Sclerotina sclerotiorum (Lib.) de Bary by Trichoderma harzianum. Trop Pest Manag 37:374–378

    Article  Google Scholar 

  • Sivasithamparam K, Ghisalberti EL (1998) In: Kubicek CP, Harman GE (eds) Trichoderma and Gliocladium, vol 1. Taylor and Francis, London, pp 139–191

    Google Scholar 

  • Stipanovic RD, Howell CR (1982) The structure of gliovirin, a new antibiotic from Gliocladium virens. J Antibiot 35:1326–1330

    PubMed  CAS  Google Scholar 

  • Szekeres A, Leitgeb B, Kredics L, Antal Z, Hatvani L, Manczinger L, Vagvolgyi C (2005) Peptaibols and related peptaibiotics of Trichoderma—a review. Acta Microbiol Immunol Hung 52:137–168

    Article  PubMed  CAS  Google Scholar 

  • Upadhyay JP, Mukhopadhyay AN (1983) Effect of non-volatile and volatile antibiotics of Trichoderma harzianum on growth of Sclerotium rolfsii. Indian J Mycol Plant Pathol 13:232–233

    Google Scholar 

  • Urbasch I (1985) Antagonistische wirkung von Trichothecium roseum (Pers.) Link ex Gray auf Pestalotia funereal. Desm Phytopathol Z 113:343–347

    Google Scholar 

  • van Loon LC, Bakker PAHM, Pieterse CMJ (1998) Systemic resistance induced by rhizosphere bacteria. Annu Rev Phytopathol 36:453–483

    Article  PubMed  Google Scholar 

  • Vanneste JL, Hill RA, Kay SJ, Farrel RL, Holland PT (2002) Biological control of sapstain fungi with natural products and biological control agents: a review of the work carried out in New Zealand. Mycol Res 106:228–232

    Article  CAS  Google Scholar 

  • Vinale F, Marra R, Scala F, Ghisalberti EL, Lorito M, Sivasithamparam K (2006) Major secondary metabolites produced by two commercial Trichoderma strains active against different phytopathogens. Lett Appl Microbiol 43:143–148

    Article  PubMed  CAS  Google Scholar 

  • Vyas RK, Mathur K (2002) Trichoderma spp. in cumin rhizosphere and their potential in suppression of wilt. Indian Phytopathol 55:455–457

    Google Scholar 

  • Wada S, Iida A, Akimoto N, Kanai M, Toyama N, Fujita T (1995) Fungal metabolites. XIX. Structural elucidation of channel-forming peptides, trichorovins-I-XIV, from the fungus Trichoderma viride. Chem Pharm Bull (Tokyo) 43:910–915

    PubMed  CAS  Google Scholar 

  • Wei X, Yang F, Straney DC (2005) Multiple non-ribosomal peptide synthetase genes determine peptaibol synthesis in Trichoderma virens. Can J Microbiol 51:423–429

    Article  PubMed  CAS  Google Scholar 

  • Weindling R (1941) Experimental consideration of the mould toxins of Gliocladium and Trichoderma. Phytopathology 31:991–1003

    CAS  Google Scholar 

  • Weindling R, Emerson OH (1936) The isolation of a toxic substance from the culture of a Trichoderma. Phytopathology 26:1068–1070

    CAS  Google Scholar 

  • Wiest A, Crzegorski D, Xu BW, Goulard C, Rebuffat S, Ebbole DJ, Bodo B, Kenerley C (2002) Identification of peptaibols from Trichoderma virens and cloning of a peptaibol synthetase. J Biol Chem 277:20862–20868

    Article  CAS  Google Scholar 

  • Xiao-Yan S, Qing-Tao S, Shu-Tao X, Xiu-Lan C, Cai-Yun S, Yu-Zhong Z (2006) Broad-spectrum antimicrobial activity and high stability of trichokonins from Trichoderma koningii SMF2 against plant pathogens. FEMS Microbiol Lett 260:119–125.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Mathivanan, N., Prabavathy, V.R., Vijayanandraj, V.R. (2008). The Effect of Fungal Secondary Metabolites on Bacterial and Fungal Pathogens. In: Karlovsky, P. (eds) Secondary Metabolites in Soil Ecology. Soil Biology, vol 14. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-74543-3_7

Download citation

Publish with us

Policies and ethics