Advertisement

Secondary Metabolites of Soil Streptomycetes in Biotic Interactions

  • Mika Tarkka
  • Rüdiger Hampp
Part of the Soil Biology book series (SOILBIOL, volume 14)

Streptomyces spp. are ubiquitous in soil microbial communities, and more than 500 species have been described thus far. The streptomycetes are generally saprophytic organisms which spend the majority of their life cycles as semidormant spores (Mayfield et al. 1972). During the life cycle, streptomycete spores germinate to produce substrate mycelium, which during maturation fragments into chains of spores. The substrate mycelium uses extracellular hydrolytic enzymes to gain nutrition from organic compounds that resist degradation by many other microbial groups, e.g. plant and fungal cell wall polysaccharides and insect exoskeletons.

Keywords

Secondary Metabolite Arbuscular Mycorrhizal Biotic Interaction Induce Systemic Resistance Combinatorial Biosynthesis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abdel-Fattah GM, Mohamedin AH (2000) Interactions between a vesicular-arbuscular mycorrhizal fungus (Glomus intraradices) and Streptomyces coelicolor and their effects on sorghum plants grown in soil amended with chitin of brawn scales. Biol Fertil Soils 32:401–409CrossRefGoogle Scholar
  2. Ames BN (1989) Mycorrhiza development in onion in response to chitin-decomposing actinomycetes. New Phytol 112:423–427CrossRefGoogle Scholar
  3. Andre B, Hein C, Grenson M, Jauniaux JC (1993) Cloning and expression of the UGA4 gene coding for the inducible GABA-specific transport protein of Saccharomyces cerevisiae. Mol Gen Genet 237:17–25PubMedCrossRefGoogle Scholar
  4. Bending GD, Poole EJ, Whipps JM, Read DJ (2002) Characterisation of bacteria from Pinus sylvestris-Suillus luteus mycorrhizas and their effects on root-fungus interactions and plant growth. FEMS Microbiol Ecol 39:219–227PubMedGoogle Scholar
  5. Berdy J (1974) Recent developments of antibiotic research and classification of antibiotics according to chemical structure. Adv Appl Microbiol 18:309–406PubMedCrossRefGoogle Scholar
  6. Berdy J (1995) Are actinomycetes exhausted as a source of secondary metabolites? In: Debabov V, Dudnik Y, Danlienko V (eds) Proceedings of the 9th international symposium on the biology of actinomycetes. All-Russia Scientific Research Institute for Genetics and Selection of Industrial Microorganisms, Moscow, pp 13–34Google Scholar
  7. Berdy J (2005) Bioactive microbial metabolites: a personal view. J Antibiot 58:1–26PubMedCrossRefGoogle Scholar
  8. Bibb MJ (2005) Regulation of secondary metabolism in streptomycetes. Curr Opin Microbiol 8:208–215PubMedCrossRefGoogle Scholar
  9. Bordoloi GN, Kumari B, Guha A, Thakur D, Bordoloi M, Roy MK, Bora TC (2002) Potential of a novel antibiotic, 2-methylheptyl isonicotinate, as a biocontrol agent against fusarial wilt of crucifers. Pest Manag Sci 58:297–302PubMedCrossRefGoogle Scholar
  10. Cao L, Qiu Z, You J, Tan H, Zhou S (2005) Isolation and characterization of endophytic streptomycete antagonists of Fusarium wilt pathogen from surface-sterilized banana roots. FEMS Microbiol Lett 247:147–152PubMedCrossRefGoogle Scholar
  11. Castillo UF, Strobel GA, Ford EJ, Hess WM, Porter H, Jensen JB, Albert H, Robison R, Condron MA, Teplow DB, Stevens D, Yaver D (2002) Munumbicins, wide-spectrum antibiotics produced by Streptomyces NRRL 30562, endophytic on Kennedia nigriscans. Microbiology 148:2675–2685PubMedGoogle Scholar
  12. Challis GL, Hopwood DA (2003) Synergy and contingency as driving forces for the evolution of multiple secondary metabolite production by Streptomyces species. Proc Natl Acad Sci USA 100(Suppl 2):14555–14561PubMedCrossRefGoogle Scholar
  13. Cho KW, Lee HS, Rho JR, Kim TS, Mo SJ, Shin J (2001) New lactone-containing metabolites from a marine-derived bacterium of the genus Streptomyces. J Nat Prod 64:664–667PubMedCrossRefGoogle Scholar
  14. Cocito C (1969) Metabolism of macromolecules in bacteria treated with virginiamycin. J Gen Microbiol 57:179–194PubMedGoogle Scholar
  15. Cocito C, Di Giambattista M, Nyssen E, Vannuffel P (1997) Inhibition of protein synthesis by streptogramins and related antibiotics. J Antimicrob Chemother 39:7–13PubMedCrossRefGoogle Scholar
  16. Coombs JT, Franco CM (2003) Isolation and identification of actinobacteria from surface-sterilized wheat roots. Appl Environ Microbiol 69:5603–5608PubMedCrossRefGoogle Scholar
  17. Crawford DL, Lynch JM, Whipps JM, Ousley MA (1993) Isolation and characterization of actinomycete antagonists of a fungal root pathogen. Appl Environ Microbiol 59:3899–3905PubMedGoogle Scholar
  18. Curl EA, Truelove B (1986) The rhizosphere. Springer, BerlinGoogle Scholar
  19. Davelos AL, Kinkel LL, Samac DA (2004) Spatial variation in frequency and intensity of antibiotic interactions among Streptomycetes from prairie soil. Appl Environ Microbiol 70:1051–1058PubMedCrossRefGoogle Scholar
  20. Diatchenko L, Lau YF, Campbell AP, Chenchik A, Moqadam F, Huang B, Lukyanov S, Lukyanov K, Gurskaya N, Sverdlov ED, Siebert PD (1996) Suppression subtractive hybridization: a method for generating differentially regulated or tissue-specific cDNA probes and libraries. Proc Nat Acad Sci USA 93:6025–6030PubMedCrossRefGoogle Scholar
  21. Doumbou CL, Hamby Salove MK, Crawford DL, Beaulieu C (2001) Actinomycetes, promising tools to control plant diseases and to promote plant growth. Phytoprotection 82:85–102Google Scholar
  22. Duponnois R, Garbaye J, Bouchard D, Churin JL (1993) The fungus-specificity of mycorrhization helper bacteria (MHBs) used as an alternative to soil fumigation for ectomycorrhizal inoculation of bare-root Douglas-fir planting stocks with Laccaria laccata. Plant Soil 157:257–262CrossRefGoogle Scholar
  23. Egan S, Wiener P, Kallifidas D, Wellington EM (1998) Transfer of streptomycin biosynthesis gene clusters within streptomycetes isolated from soil. Appl Environ Microbiol 64:5061–5063PubMedGoogle Scholar
  24. Egan S, Wiener P, Kallifidas D, Wellington EM (2001) Phylogeny of Streptomyces species and evidence for horizontal transfer of entire and partial antibiotic gene clusters. Antonie Van Leeuwenhoek 79:127–133PubMedCrossRefGoogle Scholar
  25. Emmert EA, Handelsman J (1999) Biocontrol of plant disease: a (gram-) positive perspective. FEMS Microbiol Lett 171:1–9PubMedCrossRefGoogle Scholar
  26. Ezra D, Castillo UF, Strobel GA, Hess WM, Porter H, Jensen JB, Condron MA, Teplow DB, Sears J, Maranta M, Hunter M, Weber B, Yaver D (2004) Coronamycins, peptide antibiotics produced by a verticillate Streptomyces sp. (MSU-2110) endophytic on Monstera sp. Microbiology 150:785–793PubMedCrossRefGoogle Scholar
  27. Fiedler HP, Krastel P, Muller J, Gebhardt K, Zeeck A (2001) Enterobactin: the characteristic catecholate siderophore of Enterobacteriaceae is produced by Streptomyces species. FEMS Microbiol Lett 196:147–151PubMedGoogle Scholar
  28. Firn RD, Jones CG (2000) The evolution of secondary metabolism—a unifying model. Mol Microbiol 37:989–994PubMedCrossRefGoogle Scholar
  29. Fravel DR (1988) Role of antibiosis in the biocontrol of plant diseases. Annu Rev Phytopathol 26:75–91Google Scholar
  30. Frey-Klett P, Pierrat JC, Garbaye J (1997) Location and survival of mycorrhiza helper Pseudomonas fluorescens during establishment of ectomycorrhizal symbiosis between Laccaria bicolor and Douglas Fir. Appl Environ Microbiol 63:139–144PubMedGoogle Scholar
  31. Frey-Klett P, Chavatte M, Clausse M-L, Courrier S, Le Roux C, Raaijmakers J, Martinotti MG, Pierrat J-C, Garbaye J (2005) Ectomycorrhizal symbiosis affects functional diversity of rhizosphere fluorescent pseudomonads. New Phytol 165:317–328PubMedCrossRefGoogle Scholar
  32. Garbaye J (1994) Helper bacteria: a new dimension to the mycorrhizal symbiosis. New Phytol 128:197–210CrossRefGoogle Scholar
  33. Garcia I, Job D, Matringe M (2000) Inhibition of p-hydroxyphenylpyruvate dioxygenase by the diketonitrile of isoxaflutole: a case of half-site reactivity. Biochemistry 39:7501–7507PubMedCrossRefGoogle Scholar
  34. Glick BR (1995) The enhancement of plant growth by free-living bacteria. Can J Microbiol 41:109–117CrossRefGoogle Scholar
  35. Goodfellow M, Williams ST (1983) Ecology of actinomycetes. Annu Rev Microbiol 37:189–216PubMedCrossRefGoogle Scholar
  36. Goyer C, Vachon J, Beaulieu C (1998) Pathogenicity of Streptomyces scabies mutants altered in thaxtomin A production. Phytopathology 88:442–445PubMedCrossRefGoogle Scholar
  37. Green H, Larsen J, Olsson PA, Jensen DF, Jakobsen I (1999) Suppression of the biocontrol agent Trichoderma harzianum by mycelium of the mycorrhizal fungus Glomus intraradices in root-free soil. Appl Environ Microbiol 65:1428–1434PubMedGoogle Scholar
  38. Gregor AK, Klubek B, Varsa EC (2003) Identification and use of actinomycetes for enhanced nodulation of soybean co-inoculated with Bradyrhizobium japonicum. Can J Microbiol 49:483–491PubMedCrossRefGoogle Scholar
  39. Hampp R, Maier A (2004) Interaction between soil bacteria and ectomycorrhiza-forming fungi. In: Varma A, Abbott LK, Werner D, Hampp R (eds) Plant surface microbiology. Springer, Berlin, pp 197–210Google Scholar
  40. Hampp R, Schaeffer C (1998) Mycorrhiza—carbohydrate and energy metabolism. In: Varma A, Hock B (eds) Mycorrhiza—structure, function, molecular biology and biotechnology. Springer, Berlin, pp 273–303Google Scholar
  41. Hiltner L (1904) Über neuere Erfahrungen und Probleme auf dem Gebiet der Bodenbakteriologie und unter besonderer Berücksichtigung der Gründüngung und Brache. Arb Dtsch Landwirtsch Ges 98:59–78Google Scholar
  42. Hobbie SE (1992) Effects of plant species on nutrient cycling. Trends Ecol Evolution 7:336–339CrossRefGoogle Scholar
  43. Huddleston AS, Cresswell N, Neves MC, Beringer JE, Baumberg S, Thomas DI, Wellington EM (1997) Molecular detection of streptomycin-producing streptomycetes in Brazilian soils. Appl Environ Microbiol 63:1288–1297PubMedGoogle Scholar
  44. Igarashi Y, Ogawa M, Sato Y, Saito N, Yoshida R, Kunoh H, Onaka H, Furumai T (2000) Fistupyrone, a novel inhibitor of the infection of Chinese cabbage by Alternaria brassicicola, from Streptomyces sp. TP-A0569. J Antibiot 53:1117–1122PubMedGoogle Scholar
  45. Igarashi Y, Iida T, Yoshida R, Furumai T (2002) Pteridic acids A and B, novel plant growth promoters with auxin-like activity from Streptomyces hygroscopicus TP-A0451. J Antibiot 55:764–767PubMedGoogle Scholar
  46. Jensen SE, Paradkar AS (1999) Biosynthesis and molecular genetics of clavulanic acid. Antonie Van Leeuwenhoek 75:125–133PubMedCrossRefGoogle Scholar
  47. Jensen PR, Mincer TJ, Williams PG, Fenical W (2005) Marine actinomycete diversity and natural product discovery. Antonie Van Leeuwenhoek 87:43–48PubMedCrossRefGoogle Scholar
  48. Katsifas, EA, Koraki, TG, Karagouni, AD (2000) Determination of metabolic activity of streptomycetes in soil microcosms. J Appl Microbiol 89:178–184PubMedCrossRefGoogle Scholar
  49. Keller S, Schneider K, Sussmuth RD (2006) Structure elucidation of auxofuran, a metabolite involved in stimulating growth of fly agaric, produced by the mycorrhiza helper bacterium Streptomyces AcH 505. J Antibiot 59:801–803PubMedCrossRefGoogle Scholar
  50. Kers JA, Cameron KD, Joshi MV, Bukhalid RA, Morello JE, Wach MJ, Gibson DM, Loria R (2005) A large, mobile pathogenicity island confers plant pathogenicity on Streptomyces species. Mol Microbiol 55:1025–1033PubMedCrossRefGoogle Scholar
  51. King RR, Lawrence CH, Calhoun LA (1992) Chemistry of phytotoxins associated with Streptomyces scabies, the causal organism of potato common scab. J Agric Food Chem 40:834–837CrossRefGoogle Scholar
  52. Kloepper JW, Lifshitz R, Zablotowicz RM (1989) Free-living bacterial inocula for enhancing crop productivity. Trends Biotechnol 7:39–43CrossRefGoogle Scholar
  53. Lawrence CH, Clark MC, King RR (1990) Induction of common scab symptoms in aseptically cultured potato tubers by the vivotoxin, thaxtomin. Phytopathology 80:606–608CrossRefGoogle Scholar
  54. Lee HB, Kim Y, Kim JC, Choi GJ, Park SH, Kim CJ, Jung HS (2005) Activity of some aminoglycoside antibiotics against true fungi, Phytophthora and Pythium species. J Appl Microbiol 99:836–843PubMedCrossRefGoogle Scholar
  55. Lehr NA, Schrey SD, Bauer R, Hampp R, Tarkka MT (2007) Suppression of plant defence response by a mycorrhiza helper bacterium. New Phytol 174, 892–903PubMedCrossRefGoogle Scholar
  56. Liras P (1999) Biosynthesis and molecular genetics of cephamycins. Cephamycins produced by actinomycetes. Antonie Van Leeuwenhoek 75:109–124PubMedCrossRefGoogle Scholar
  57. Loria R, Bukhalid RA, Fry BA, King RR (1997) Plant pathogenicity in the genus Streptomyces. Plant Dis 81:836–846CrossRefGoogle Scholar
  58. Maier A (2003) Einfluss bakterieller Stoffwechselprodukte auf Wachstum und Proteom des Ektomykorrhizapilzes Amanita muscaria. PhD thesis, University of TübingenGoogle Scholar
  59. Maier A, Riedlinger J, Fiedler H-P, Hampp R (2004) Actinomycetales bacteria from a spruce stand: characterization and effects on growth of root symbiotic, and plant parasitic soil fungi in dual culture. Mycol Prog 3:129–136CrossRefGoogle Scholar
  60. Mayfield CI, Williams ST, Ruddick SM, Hatfield HL (1972) Studies on the ecology of actinomycetes in soil. IV. Observations on the form and growth of Streptomycetes in soil. Soil Biol Biochem 4:79–91CrossRefGoogle Scholar
  61. McDaniel R, Welch M, Hutchinson R (2005) Genetic approaches to polyketide antibiotics. Chem Rev 105:543–558PubMedCrossRefGoogle Scholar
  62. Meyer JR, Linderman RG (1986) Selective influence of rhizosphere or rhizoplane bacteria and actinomycetes by mycorrhizas formed by Glomus fasciculatum. Soil Biol Biochem 18:191–196CrossRefGoogle Scholar
  63. Mugnier J, Mosse B (1987) Spore germination and viability of vesicular arbuscular mycorrhizal fungus Glomus mossae.Trans Br Mycol Soc 88:411–413CrossRefGoogle Scholar
  64. Nunes LR et al (2005) Transcriptome analysis of Paracoccidioides brasiliensis cells undergoing mycelium-to-yeast transition. Eukaryot Cell 4:2115–2128PubMedCrossRefGoogle Scholar
  65. Patel JJ (1974) Antagonism of actinomycetes against rhizobia. Plant Soil 41:395–402CrossRefGoogle Scholar
  66. Paulitz TC, Belanger RR (2001) Biocontrol in greenhouse systems. Annu Rev Phytopathol 39:103–133PubMedCrossRefGoogle Scholar
  67. Pedersen EA, Reddy MS, Chakravarty P (1999) Effect of three species of bacteria on damping-off, root rot development, and ectomycorrhizal colonization of lodgepole pine and white seedlings. Eur J For Pathol 29:123–134CrossRefGoogle Scholar
  68. Probanza A, Lucas JA, Guiterrez-Mañero JF (1996) The influence of native rhizobacteria on European alder (Alnus glutinosa (L.) Gaertn.) growth. I. Characterization of growth promoting and growth inhibiting bacterial strains. Plant Soil 182:59–66CrossRefGoogle Scholar
  69. Rangarajan M, David Ravindran A, Hariharan K (1984) Occurrence of a lysogenic Streptomyces sp. on the nodule surface of black gram (Vigna mungo (L.) Hepper). Appl Environ Microbiol 48:232–233PubMedGoogle Scholar
  70. Richter DL, Zuellig TR, Bagley ST, Bruhn JN (1989) Effects of red pine (Pinus resinosa Ait.) mycorrhizoplane-associated actinomycetes on in vitro growth of ectomycorrhizal fungi. Plant Soil 115:109–116CrossRefGoogle Scholar
  71. Riedlinger J, Schrey SD, Tarkka MT, Hampp R, Kapur M, Fiedler H-P (2006) Auxofuran, a novel metabolite stimulating growth of fly agaric, produced by the mycorrhiza helper bacterium Streptomyces AcH 505. Appl Environ Microbiol 72:3550–3557PubMedCrossRefGoogle Scholar
  72. Sanchez-Lopez JM, Martinez Insua M, Perez Baz J, Fernandez Puentes JL, Canedo Hernandez LM (2003) New cytotoxic indolic metabolites from a marine Streptomyces. J Nat Prod 66:863–864PubMedCrossRefGoogle Scholar
  73. Sanglier JJ, Haag H, Huck TA, Fehr T (1996) Review of actinomycetes compounds 1990–1995. Expert Opin Invest Drugs 5:207–223CrossRefGoogle Scholar
  74. Sardi P, Saracchi M, Quaroni S, Petrolini B, Borgonovi GE, Merli S (1992) Isolation of endophytic Streptomyces strains from surface-sterilized roots. Appl Environ Microbiol. 58:2691–2693PubMedGoogle Scholar
  75. Schelkle M, Peterson RL (1996) Supression of common root pathogens by helper bacteria and ectomycorrhizal fungi in vitro. Mycorrhiza 6:481–485CrossRefGoogle Scholar
  76. Schrey SD, Schellhammer M, Ecke M, Hampp R, Tarkka MT (2005) Mycorrhiza helper bacterium Streptomyces AcH 505 induces differential gene expression in the ectomycorrhizal fungus Amanita muscaria. New Phytol 168:205–216PubMedCrossRefGoogle Scholar
  77. Schrey SD, Salo V, Raudaskoski M, Hampp R, Nehls U, Tarkka MT (2007) Interaction with mycorrhiza helper bacterium Streptomyces sp. ACH 505 modifies organisation of actin cytoskeleton in the ectomycorrhizal fungus Amanita muscaria (fly agaric). Curr Genet 52:77–85PubMedCrossRefGoogle Scholar
  78. Siddiqui ZA, Mahmood I (1999) Role of bacteria in the management of plant parasitic nematodes: a review. Bioresour Technol 69:167–179CrossRefGoogle Scholar
  79. Smalla K, Wieland G, Buchner A, Zock A, Parzy J, Kaiser S, Roskot N, Heuer H, Berg G (2001) Bulk and rhizosphere soil bacterial communities studied by denaturing gradient gel electrophoresis: plant-dependent enrichment and seasonal shifts revealed. Appl Environ Microbiol 67:4742–4751PubMedCrossRefGoogle Scholar
  80. Smith SE, Read DJ (1997) Mycorrhizal symbiosis, 2nd edn. Academic, Cambridge, pp 1–605Google Scholar
  81. Söderström B (1992) Ecological potential of ectomycorrhizal mycelium. In: Read DJ, Lewis DH, Fitter AH, Alexander IJ (eds) Mycorrhizas in ecosystems. Cambridge University Press, Cambridge, pp 77–83Google Scholar
  82. Sola-Landa A, Moura RS, Martin JF (2003) The two-component PhoR-PhoP system controls both primary metabolism and secondary metabolite biosynthesis in Streptomyces lividans. Proc Natl Acad Sci USA 100:6133–6138PubMedCrossRefGoogle Scholar
  83. Stone MJ, Williams DH (1992) On the evolution of functional secondary metabolites (natural products). Mol Microbiol 6:29–34PubMedCrossRefGoogle Scholar
  84. Taechowisan T, Lu C, Shen Y, Lumyong S (2005) Secondary metabolites from endophytic Streptomyces aureofaciens CMUAc130 and their antifungal activity. Microbiology 151:1691–1695PubMedCrossRefGoogle Scholar
  85. Tokala RK, Strap JL, Jung CM, Crawford DL, Salove MH, Deobald LA, Bailey JF, Morra MJ (2002) Novel plant-microbe rhizosphere interaction involving Streptomyces lydicus WYEC108 and the pea plant (Pisum sativum). Appl Environ Microbiol 68:2161–2171PubMedCrossRefGoogle Scholar
  86. Tylka GL, Hussey RS, Roncadori RW (1991) Axenic germination of vesicular arbuscular mycorrhital fungi: effects of selected Streptomyces species. Phytopathology 81:754–759CrossRefGoogle Scholar
  87. Weissman KJ, Leadlay PF (2005) Combinatorial biosynthesis of reduced polyketides. Nat Rev Microbiol 3:925–936PubMedCrossRefGoogle Scholar
  88. Weist S, Süssmuth RD (2005) Mutational biosynthesis–a tool for the generation of structural diversity in the biosynthesis of antibiotics. Appl Microbiol Biotechnol 68:141–150PubMedCrossRefGoogle Scholar
  89. Weller DM, Raaijmakers JM, Gardener BB, Thomashow LS (2002) Microbial populations responsible for specific soil suppressiveness to plant pathogens. Annu Rev Phytopathol 40:309–348PubMedCrossRefGoogle Scholar
  90. Whipps JM (2001) Microbial interactions and biocontrol in the rhizosphere. J Exp Bot 52:487–511PubMedGoogle Scholar
  91. Whipps JM, Lynch JM (1986) The influence of the rhizosphere on crop productivity. Adv Microb Ecol 9:187–244Google Scholar
  92. Wiener P (2000) Antibiotic production in a spatially structured environment. Ecol Lett 3:122–133CrossRefGoogle Scholar
  93. Wiener P, Egan S, Huddleston AS, Wellington EM (1998) Evidence for transfer of antibiotic-resistance genes in soil populations of streptomycetes. Mol Ecol 7:1205–1216PubMedCrossRefGoogle Scholar
  94. Wyss P, Boller T, Wiemken A (1992) Testing the effect of biological control agents on the formation of vesicular arbuscular mycorrhiza. Plant Soil 147:159–162CrossRefGoogle Scholar
  95. Yuan WM, Crawford DL (1995) Characterization of Streptomyces lydicus WYEC108 as a potential biocontrol agent against fungal root and seed rots. Appl Environ Microbiol 61:3119–3128PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Mika Tarkka
  • Rüdiger Hampp
    • 1
  1. 1.Botanical Institute, Physiological Ecology of PlantsUniversity of TübingenTübingenGermany

Personalised recommendations