Advertisement

N-Acyl Homoserine Lactone Quorum Sensing in Gram-Negative Rhizobacteria

  • Sara Ferluga
  • Laura Steindler
  • Vittorio Venturi
Part of the Soil Biology book series (SOILBIOL, volume 14)

In the last 15 years microbiologists have become aware that in most bacteria a major level of regulation exists which involves intercellular communication via the production and response to signal molecules. The concentration of the signal molecules increases alongside the bacterial population density and when it reaches a critical level, when a sufficient number of cells are present, bacteria respond and modulate gene expression. This cell-density-dependent modulation of gene expression has been termed quorum sensing (QS) (Fuqua et al. 1994). This allows bacteria to modify their behavior and act as multicellular entities; it is believed that in natural ecosystems bacteria are always aiming at establishing communities rather than choosing to exist as solitary cells. The reason being that intercellular communication provides significant advantages to a group of bacteria such as improving access to environmental niches, enhancing its defense capabilities against other microorganisms or eukaryotic host-defense mechanisms, and facilitating the adaptation to changing environmental conditions.

Keywords

Quorum Sense Burkholderia Cepacia Quorum Sense System Ralstonia Solanacearum Burkholderia Cepacia Complex 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aguilar C, Bertani I, Venturi V (2003a) Quorum-sensing system and stationary-phase sigma factor (rpoS) of the onion pathogen Burkholderia cepacia genomovar I type strain, ATCC 25416. Appl Environ Microbiol 69:1739–1747PubMedCrossRefGoogle Scholar
  2. Aguilar C, Friscina A, Devescovi G, Kojic M, Venturi V (2003b) Identification of quorum-sensing-regulated genes of Burkholderia cepacia. J Bacteriol 185:6456–6462PubMedCrossRefGoogle Scholar
  3. Andersson RA, Eriksson AR, Heikinheimo R, Mae A, Pirhonen M, Koiv V, Hyytiainen H, Tuikkala A, Palva ET (2000) Quorum sensing in the plant pathogen Erwinia carotovora subsp. carotovora: the role of expR(Ecc). Mol Plant Microbe Interact 13:384–393PubMedCrossRefGoogle Scholar
  4. Bailey BA (1995) Purification of a protein from culture filtrates of Fusarium oxysporum that induces ethylene and necrosis in leaves of Erythroxylum coca. Phytopathology 85:1250–1255CrossRefGoogle Scholar
  5. Bainton NJ, Stead P, Chhabra SR, Bycroft BW, Salmond GP, Stewart GS, Williams P (1992).N-(3-Oxohexanoyl)-L-homoserine lactone regulates carbapenem antibiotic production in Erwinia carotovora. Biochem J 288:997–1004PubMedGoogle Scholar
  6. Bais HP, Park SW, Weir TL, Callaway RM, Vivanco JM (2004) How plants communicate using the underground information superhighway. Trends Plant Sci 9:26–32PubMedCrossRefGoogle Scholar
  7. Barber CE, Tang JL, Feng JX, Pan MQ, Wilson TJ, Slater H, Dow JM, Williams P, Daniels MJ (1997) A novel regulatory system required for pathogenicity of Xanthomonas campestris is mediated by a small diffusible signal molecule. Mol Microbiol 24:555–566PubMedCrossRefGoogle Scholar
  8. Barras F, van Gijsegem F, Chatterjee AK (1994) Extracellular enzymes and pathogenesis of soft-rot Erwinia. Annu Rev Phytopathol 32:201–234Google Scholar
  9. Bassler BL (2002) Small talk. Cell-to-cell communication in bacteria. Cell 109:421–424PubMedCrossRefGoogle Scholar
  10. Bauer WD, Mathesius U (2004) Plant responses to bacterial quorum sensing signals. Curr Opin Plant Biol 7:429–433PubMedCrossRefGoogle Scholar
  11. Beck von Bodman S, Farrand SK (1995) Capsular polysaccharide biosynthesis and pathogenicity in Erwinia stewartii require induction by an N-acylhomoserine lactone autoinducer. J Bacteriol 177:5000–5008Google Scholar
  12. Beck von Bodman SB, Majerczak DR, Coplin DL (1998) A negative regulator mediates quorum-sensing control of exopolysaccharide production in Pantoea stewartii subsp. stewartii. Proc Natl Acad Sci USA 95(13):7687–7692CrossRefGoogle Scholar
  13. Bernier SP, Silo-Suh L, Woods DE, Ohman DE, Sokol PA (2003) Comparative analysis of plant and animal models for characterization of Burkholderia cepacia virulence. Infect Immun 71:5306–13PubMedCrossRefGoogle Scholar
  14. Bertani I, Venturi V (2004) Regulation of the N-acyl homoserine lactone-dependent quorum-sensing system in rhizosphere Pseudomonas putida WCS358 and cross-talk with the stationary-phase RpoS sigma factor and the global regulator GacA. Appl Environ Microbiol 70:5493–502PubMedCrossRefGoogle Scholar
  15. Burkholder WH (1950) Sour skin, a bacterial rot of onion bulbs. Phytopathology 40:115–117Google Scholar
  16. Cha C, Gao P, Chen YC, Shaw PD, Farrand SK (1998) Production of acyl-homoserine lactone quorum-sensing signals by gram-negative plant-associated bacteria. Mol Plant Microbe Interact 11:1119–1129PubMedCrossRefGoogle Scholar
  17. Chancey ST, Wood DW, Pierson LS 3rd (1999) Two-component transcriptional regulation of.N-acyl-homoserine lactone production in Pseudomonas aureofaciens. Appl Environ Microbiol 65:2294–2299PubMedGoogle Scholar
  18. Chen X, Schauder S, Potier N, Van Dorsselaer A, Pelczer I, Bassler BL, Hughson FM (2002) Structural identification of a bacterial quorum-sensing signal containing boron. Nature 415:545–549PubMedCrossRefGoogle Scholar
  19. Chin AWTF, van den Broek D, de Voer G, van der Drift KM, Tuinman S, Thomas-Oates JE, Lugtenberg BJ, Bloemberg GV (2001) Phenazine-1-carboxamide production in the biocontrol strain Pseudomonas chlororaphis PCL1391 is regulated by multiple factors secreted into the growth medium. Mol Plant Microbe Interact 14:969–979CrossRefGoogle Scholar
  20. Chin AWTF, van den Broek D, Lugtenberg BJ, Bloemberg GV (2005) The Pseudomonas chlororaphis PCL1391 sigma regulator psrA represses the production of the antifungal metabolite phenazine-1-carboxamide. Mol Plant Microbe Interact 18:244–253CrossRefGoogle Scholar
  21. Coenye T, Vandamme P (2003) Diversity and significance of Burkholderia species occupying diverse ecological niches. Environ Microbiol 5:719–729PubMedCrossRefGoogle Scholar
  22. Compant S, Duffy B, Nowak J, Clement C, Barka EA (2005) Use of plant growth-promoting bacteria for biocontrol of plant diseases: principles, mechanisms of action, and future prospects. Appl Environ Microbiol 71:4951–4659PubMedCrossRefGoogle Scholar
  23. Conway BA, Greenberg EP (2002) Quorum-sensing signals and quorum-sensing genes in Burkholderia vietnamiensis. J Bacteriol 184:1187–1191PubMedCrossRefGoogle Scholar
  24. Corbett M, Virtue S, Bell K, Birch P, Burr T, Hyman L, Lilley K, Poock S, Toth I, Salmond G (2005) Identification of a new quorum-sensing-controlled virulence factor in Erwinia carotovora subsp. atroseptica secreted via the type II targeting pathway. Mol Plant Microbe Interact 18:334–342PubMedCrossRefGoogle Scholar
  25. Costa JM, Loper JE (1997) EcbI and EcbR: homologs of LuxI and LuxR affecting antibiotic and exoenzyme production by Erwinia carotovora subsp. betavasculorum. Can J Microbiol 43:1164–1171PubMedCrossRefGoogle Scholar
  26. Cubo MT, Economou A, Murphy G, Johnston AW, Downie JA (1992) Molecular characterization and regulation of the rhizosphere-expressed genes rhiABCR that can influence nodulation by Rhizobium leguminosarum biovar viciae. J Bacteriol 174:4026–4035PubMedGoogle Scholar
  27. Daniels R, De Vos DE, Desair J, Raedschelders G, Luyten E, Rosemeyer V, Verreth C, Schoeters E, Vanderleyden J, Michiels J (2002) The cin quorum sensing locus of Rhizobium etli CNPAF512 affects growth and symbiotic nitrogen fixation. J Biol Chem 277:462–468PubMedCrossRefGoogle Scholar
  28. Danino VE, Wilkinson A, Edwards A, Downie JA (2003) Recipient-induced transfer of the symbiotic plasmid pRL1JI in Rhizobium leguminosarum bv. viciae is regulated by a quorum-sensing relay. Mol Microbiol 50:511–525PubMedCrossRefGoogle Scholar
  29. Dong YH, Zhang LH (2005) Quorum sensing and quorum-quenching enzymes. J Microbiol 43:101–109PubMedGoogle Scholar
  30. Dong YH, Wang LH, Xu JL, Zhang HB, Zhang XF, Zhang LH (2001) Quenching quorum-sensing-dependent bacterial infection by an N-acyl homoserine lactonase. Nature 411:813–817PubMedCrossRefGoogle Scholar
  31. Dong YH, Zhang XF, Xu JL, Zhang LH (2004) Insecticidal Bacillus thuringiensis silences Erwinia carotovora virulence by a new form of microbial antagonism, signal interference. Appl Environ Microbiol 70:954–960PubMedCrossRefGoogle Scholar
  32. Dumenyo CK, Mukherjee A, Chun W, Chatterjee AK (1998) Genetic and physiological evidence for the production of N-acyl homoserine lactones by Pseudomonas syringae pv. syringae and other fluorescent plant pathogenic Pseudomonas species. Eur J Plant Pathol 104:569–582CrossRefGoogle Scholar
  33. Elasri M, Delorme S, Lemanceau P, Stewart G, Laue B, Glickmann E, Oger PM, Dessaux Y (2001) Acyl-homoserine lactone production is more common among plant-associated Pseudomonas spp. than among soilborne Pseudomonas spp. Appl Environ Microbiol 67:1198–1209PubMedCrossRefGoogle Scholar
  34. Fineran PC, Slater H, Everson L, Hughes K, Salmond GP (2005) Biosynthesis of tripyrrole and beta-lactam secondary metabolites in Serratia: integration of quorum sensing with multiple new regulatory components in the control of prodigiosin and carbapenem antibiotic production. Mol Microbiol 56:1495–1517PubMedCrossRefGoogle Scholar
  35. Flavier AB, Clough SJ, Schell MA, Denny TP (1997a) Identification of 3-hydroxypalmitic acid methyl ester as a novel autoregulator controlling virulence in Ralstonia solanacearum. Mol Microbiol 26:251–259PubMedCrossRefGoogle Scholar
  36. Flavier AB, Ganova-Raeva LM, Schell MA, Denny TP (1997b) Hierarchical autoinduction in Ralstonia solanacearum: control of acyl-homoserine lactone production by a novel autoregulatory system responsive to 3-hydroxypalmitic acid methyl ester. J Bacteriol 179:7089–7097PubMedGoogle Scholar
  37. Flavier AB, Schell MA, Denny TP (1998) An RpoS (sigmaS) homologue regulates acylhomoserine lactone-dependent autoinduction in Ralstonia solanacearum. Mol Microbiol 28:475–486PubMedCrossRefGoogle Scholar
  38. Fray RG, Throup JP, Daykin M, Wallace A, Williams P, Stewart GS, Grierson D (1999) Plants genetically modified to produce N-acylhomoserine lactones communicate with bacteria. Nat Biotechnol 17:1017–1020PubMedCrossRefGoogle Scholar
  39. Fuqua WC, Winans SC, Greenberg EP (1994) Quorum sensing in bacteria: the LuxR-LuxI family of cell density-responsive transcriptional regulators. J Bacteriol 176:269–275PubMedGoogle Scholar
  40. Fuqua C, Parsek MR, Greenberg EP (2001) Regulation of gene expression by cell-to-cell communication: acyl-homoserine lactone quorum sensing. Annu Rev Genet 35:439–468PubMedCrossRefGoogle Scholar
  41. Gage DJ (2004) Infection and invasion of roots by symbiotic, nitrogen-fixing rhizobia during nodulation of temperate legumes. Microbiol Mol Biol Rev 68:280–300PubMedCrossRefGoogle Scholar
  42. Gao M, Teplitski M, Robinson JB, Bauer WD (2003) Production of substances by Medicago truncatula that affect bacterial quorum sensing. Mol Plant Microbe Interact 16:827–834PubMedCrossRefGoogle Scholar
  43. Gonzalez JE, Marketon MM (2003) Quorum sensing in nitrogen-fixing rhizobia. Microbiol Mol Biol Rev 67:574–592PubMedCrossRefGoogle Scholar
  44. Gotschlich A, Huber B, Geisenberger O, Togl A, Steidle A, Riedel K, Hill P, Tummler B, Vandamme P, Middleton B, Camara M, Williams P, Hardman A, Eberl L (2001) Synthesis of multiple N-acylhomoserine lactones is wide-spread among the members of the Burkholderia cepacia complex. Syst Appl Microbiol 24:1–14PubMedCrossRefGoogle Scholar
  45. Grimont PA, Grimont F (1978) The genus Serratia. Annu Rev Microbiol 32:221–248PubMedCrossRefGoogle Scholar
  46. Haas D, Defago G (2005) Biological control of soil-borne pathogens by fluorescent pseudomonads. Nat Rev Microbiol 3:307–319PubMedCrossRefGoogle Scholar
  47. Ham JH, Cui Y, Alfano JR, Rodriguez-Palenzuela P, Rojas CM, Chatterjee AK, Collmer A (2004) Analysis of Erwinia chrysanthemi EC16 4 pelE:uidA, pelL:uidA, and hrpN:uidA mutants reveals strain-specific atypical regulation of the Hrp type III secretion system. Mol Plant Microbe Interact 17:184–194PubMedCrossRefGoogle Scholar
  48. Hentzer M, Wu H, Andersen JB, Riedel K, Rasmussen TB, Bagge N, Kumar N, Schembri MA, Song Z, Kristoffersen P, Manefield M, Costerton JW, Molin S, Eberl L, Steinberg P, Kjelleberg S, Hoiby N, Givskov M (2003) Attenuation of Pseudomonas aeruginosa virulence by quorum sensing inhibitors. EMBO J 22:3803–3815PubMedCrossRefGoogle Scholar
  49. Huber B, Feldmann F, Kothe M, Vandamme P, Wopperer J, Riedel K, Eberl L (2004) Identification of a novel virulence factor in Burkholderia cenocepacia H111 required for efficient slow killing of Caenorhabditis elegans. Infect Immun 72:7220–7230PubMedCrossRefGoogle Scholar
  50. Jones S, Yu B, Bainton NJ, Birdsall M, Bycroft BW, Chhabra SR, Cox AJ, Golby P, Reeves PJ, Stephens S, Winson MK, Salmond GP, Stewart G, Williams P (1993) The lux autoinducer regulates the production of exoenzyme virulence determinants in Erwinia carotovora and Pseudomonas aeruginosa. EMBO J 12:2477–2482PubMedGoogle Scholar
  51. Juhas M, Eberl L, Tummler B (2005) Quorum sensing: the power of cooperation in the world of Pseudomonas. Environ Microbiol 7:459–471PubMedCrossRefGoogle Scholar
  52. Khan SR, Mavrodi DV, Jog GJ, Suga H, Thomashow LS, Farrand SK (2005) Activation of the phz operon of Pseudomonas fluorescens 2–79 requires the LuxR homolog PhzR, N-(3-OH-hexanoyl)-L-homoserine lactone produced by the LuxI homolog PhzI, and a cis-acting phz box. J Bacteriol 187:6517–6527PubMedCrossRefGoogle Scholar
  53. Kim J, Kim JG, Kang Y, Jang JY, Jog GJ, Lim JY, Kim S, Suga H, Nagamatsu T, Hwang I (2004) Quorum sensing and the LysR-type transcriptional activator ToxR regulate toxoflavin biosynthesis and transport in Burkholderia glumae. Mol Microbiol 54:921–934PubMedCrossRefGoogle Scholar
  54. Kohler T, van Delden C, Curty LK, Hamzehpour MM, Pechere JC (2001) Overexpression of the MexEF-OprN multidrug efflux system affects cell-to-cell signaling in Pseudomonas aeruginosa. J Bacteriol 183:5213–5222PubMedCrossRefGoogle Scholar
  55. Labbate M, Queck SY, Koh KS, Rice SA, Givskov M, Kjelleberg S (2004) Quorum sensing-controlled biofilm development in Serratia liquefaciens MG1. J Bacteriol 186:692–698PubMedCrossRefGoogle Scholar
  56. Latifi A, Foglino M, Tanaka K, Williams P, Lazdunski A (1996) A hierarchical quorum-sensing cascade in Pseudomonas aeruginosa links the transcriptional activators LasR and RhIR (VsmR) to expression of the stationary-phase sigma factor RpoS. Mol Microbiol 21:1137–1146PubMedCrossRefGoogle Scholar
  57. Lewenza S, Visser MB, Sokol PA (2002) Interspecies communication between Burkholderia cepacia and Pseudomonas aeruginosa. Can J Microbiol 48:707–716PubMedCrossRefGoogle Scholar
  58. Lindum PW, Anthoni U, Christophersen C, Eberl L, Molin S, Givskov M (1998) N-Acyl-L-homoserine lactone autoinducers control production of an extracellular lipopeptide biosurfactant required for swarming motility of Serratia liquefaciens MG1. J Bacteriol 180:6384–6388PubMedGoogle Scholar
  59. Lithgow JK, Wilkinson A, Hardman A, Rodelas B, Wisniewski-Dye F, Williams P, Downie JA (2000) The regulatory locus cinRI in Rhizobium leguminosarum controls a network of quorum-sensing loci. Mol Microbiol 37:81–97PubMedCrossRefGoogle Scholar
  60. Loh J, Pierson EA, Pierson LS 3rd, Stacey G, Chatterjee A (2002) Quorum sensing in plant-associated bacteria. Curr Opin Plant Biol 5:285–290PubMedCrossRefGoogle Scholar
  61. Lutter E, Lewenza S, Dennis JJ, Visser MB, Sokol PA (2001) Distribution of quorum-sensing genes in the Burkholderia cepacia complex. Infect Immun 69:4661–4666PubMedCrossRefGoogle Scholar
  62. Mae A, Montesano M, Koiv V, Palva ET (2001) Transgenic plants producing the bacterial pheromone N-acyl-homoserine lactone exhibit enhanced resistance to the bacterial phytopathogen Erwinia carotovora. Mol Plant Microbe Interact 14:1035–1042PubMedCrossRefGoogle Scholar
  63. Mahenthiralingam E, Urban TA, Goldberg JB (2005) The multifarious, multireplicon Burkholderia cepacia complex. Nat Rev Microbiol 3:144–156PubMedCrossRefGoogle Scholar
  64. Malott RJ, Baldwin A, Mahenthiralingam E, Sokol PA (2005) Characterization of the cciIR quorum-sensing system in Burkholderia cenocepacia. Infect Immun 73:4982–4992PubMedCrossRefGoogle Scholar
  65. Marketon MM, Gonzalez JE (2002) Identification of two quorum-sensing systems in Sinorhizobium meliloti. J Bacteriol 184:3466–3475PubMedCrossRefGoogle Scholar
  66. Marketon MM, Glenn SA, Eberhard A, Gonzalez JE (2003) Quorum sensing controls exopolysaccharide production in Sinorhizobium meliloti. J Bacteriol 185:325–331PubMedCrossRefGoogle Scholar
  67. Mathesius U, Mulders S, Gao M, Teplitski M, Caetano-Anolles G, Rolfe BG, Bauer WD (2003) Extensive and specific responses of a eukaryote to bacterial quorum-sensing signals. Proc Natl Acad Sci USA 100:1444–1449PubMedCrossRefGoogle Scholar
  68. McGowan S, Sebaihia M, Jones S, Yu B, Bainton N, Chan PF, Bycroft B, Stewart GS, Williams P, Salmond GP (1995) Carbapenem antibiotic production in Erwinia carotovora is regulated by CarR, a homologue of the LuxR transcriptional activator. Microbiology 141:541–550PubMedCrossRefGoogle Scholar
  69. McGowan SJ, Barnard AM, Bosgelmez G, Sebaihia M, Simpson NJ, Thomson NR, Todd DE, Welch M, Whitehead NA, Salmond GP (2005) Carbapenem antibiotic biosynthesis in Erwinia carotovora is regulated by physiological and genetic factors modulating the quorum sensing-dependent control pathway. Mol Microbiol 55:526–545PubMedCrossRefGoogle Scholar
  70. McKenney D, Brown KE, Allison DG (1995) Influence of Pseudomonas aeruginosa exoproducts on virulence factor production in Burkholderia cepacia: evidence of interspecies communication. J Bacteriol 177:6989–6992PubMedGoogle Scholar
  71. Miller MB, Bassler BL (2001) Quorum sensing in bacteria. Annu Rev Microbiol 55:165–199PubMedCrossRefGoogle Scholar
  72. Molina L, Rezzonico F, Defago G, Duffy B (2005) Autoinduction in Erwinia amylovora: evidence of an acyl-homoserine lactone signal in the fire blight pathogen. J Bacteriol 187:3206–3213PubMedCrossRefGoogle Scholar
  73. Nasser W, Bouillant ML, Salmond G, Reverchon S (1998) Characterization of the Erwinia chrysanthemi expI-expR locus directing the synthesis of two N-acyl-homoserine lactone signal molecules. Mol Microbiol 29:1391–1405PubMedCrossRefGoogle Scholar
  74. O’Sullivan LA, Mahenthiralingam E (2005) Biotechnological potential within the genus Burkholderia. Lett Appl Microbiol 41:8–11PubMedCrossRefGoogle Scholar
  75. Ovadis M, Liu X, Gavriel S, Ismailov Z, Chet I, Chernin L (2004) The global regulator genes from biocontrol strain Serratia plymuthica IC1270: cloning, sequencing, and functional studies. J Bacteriol 186:4986–4993PubMedCrossRefGoogle Scholar
  76. Pearson JP, Van Delden C, Iglewski BH (1999) Active efflux and diffusion are involved in transport of Pseudomonas aeruginosa cell-to-cell signals. J Bacteriol 181:1203–1210PubMedGoogle Scholar
  77. Pemberton CL, Whitehead NA, Sebaihia M, Bell KS, Hyman LJ, Harris SJ, Matlin AJ, Robson ND, Birch PR, Carr JP, Toth IK, Salmond GP (2005) Novel quorum-sensing-controlled genes in Erwinia carotovora subsp. carotovora: identification of a fungal elicitor homologue in a soft-rotting bacterium. Mol Plant Microbe Interact 18:343–353PubMedCrossRefGoogle Scholar
  78. Perombelon MCM (2002) Potato diseases caused by soft rot erwinias: an overview of pathogenesis. Plant Pathol 51:1–12CrossRefGoogle Scholar
  79. Pierson LS 3rd, Keppenne VD, Wood DW (1994) Phenazine antibiotic biosynthesis in Pseudomonas aureofaciens 30–84 is regulated by PhzR in response to cell density. J Bacteriol 176:3966–3674PubMedGoogle Scholar
  80. Pierson LS 3rd, Gaffney T, Lam S, Gong F (1995) Molecular analysis of genes encoding phenazine biosynthesis in the biological control bacterium Pseudomonas aureofaciens 30–84. FEMS Microbiol Lett 134:299–307PubMedGoogle Scholar
  81. Pierson EA, Wood DW, Cannon JA, Blachere FM, Pierson LS (1998a) Interpopulation signaling via N-acyl-homoserine lactones among bacteria in the wheat rhizosphere. Mol Plant Microbe Interact 11:1078–1084CrossRefGoogle Scholar
  82. Pierson LS 3rd, Wood DW, Pierson EA (1998b) Homoserine lactone-mediated gene regulation in plant-associated bacteria. Annu Rev Phytopathol 36:207–225PubMedCrossRefGoogle Scholar
  83. Quinones B, Pujol CJ, Lindow SE (2004) Regulation of AHL production and its contribution to epiphytic fitness in Pseudomonas syringae. Mol Plant Microbe Interact 17:521–531PubMedCrossRefGoogle Scholar
  84. Riedel K, Hentzer M, Geisenberger O, Huber B, Steidle A, Wu H, Hoiby N, Givskov M, Molin S, Eberl L (2001) N-Acylhomoserine-lactone-mediated communication between Pseudomonas aeruginosa and Burkholderia cepacia in mixed biofilms. Microbiology 147:3249–3262PubMedGoogle Scholar
  85. Riedel K, Arevalo-Ferro C, Reil G, Gorg A, Lottspeich F, Eberl L (2003) Analysis of the quorum-sensing regulon of the opportunistic pathogen Burkholderia cepacia H111 by proteomics. Electrophoresis 24:740–750PubMedCrossRefGoogle Scholar
  86. Rodelas B, Lithgow JK, Wisniewski-Dye F, Hardman A, Wilkinson A, Economou A, Williams P, Downie JA (1999) Analysis of quorum-sensing-dependent control of rhizosphere-expressed (rhi) genes in Rhizobium leguminosarum bv. viciae. J Bacteriol 181:3816–3823PubMedGoogle Scholar
  87. Ruby EG (1996) Lessons from a cooperative, bacterial-animal association: the Vibrio fischeri-Euprymna scolopes light organ symbiosis. Annu Rev Microbiol 50:591–624PubMedCrossRefGoogle Scholar
  88. Schuster M, Lostroh CP, Ogi T, Greenberg EP (2003) Identification, timing, and signal specificity of Pseudomonas aeruginosa quorum-controlled genes: a transcriptome analysis. J Bacteriol 185:2066–2079PubMedCrossRefGoogle Scholar
  89. Seed PC, Passador L, Iglewski BH (1995) Activation of the Pseudomonas aeruginosa lasI gene by LasR and the Pseudomonas autoinducer PAI: an autoinduction regulatory hierarchy. J Bacteriol 177:654–659PubMedGoogle Scholar
  90. Shaw PD, Ping G, Daly SL, Cha C, Cronan JE Jr, Rinehart KL, Farrand SK (1997) Detecting and characterizing N-acyl-homoserine lactone signal molecules by thin-layer chromatography. Proc Natl Acad Sci USA 94:6036–6041PubMedCrossRefGoogle Scholar
  91. Slater H, Crow M, Everson L, Salmond GP (2003) Phosphate availability regulates biosynthesis of two antibiotics, prodigiosin and carbapenem, in Serratia via both quorum-sensing-dependent and -independent pathways. Mol Microbiol 47:303–320PubMedCrossRefGoogle Scholar
  92. Smadja B, Latour X, Faure D, Chevalier S, Dessaux Y, Orange N (2004) Involvement of.N-acylhomoserine lactones throughout plant infection by Erwinia carotovora subsp. atroseptica (Pectobacterium atrosepticum). Mol Plant Microbe Interact 17:1269–1278PubMedCrossRefGoogle Scholar
  93. Smith RS, Iglewski BH (2003) P. aeruginosa quorum-sensing systems and virulence. Curr Opin Microbiol 6:56–60PubMedCrossRefGoogle Scholar
  94. Sokol PA, Sajjan U, Visser MB, Gingues S, Forstner J, Kooi C (2003) The CepIR quorum-sensing system contributes to the virulence of Burkholderia cenocepacia respiratory infections. Microbiology 149:3649–3658PubMedCrossRefGoogle Scholar
  95. Steidle A, Sigl K, Schuhegger R, Ihring A, Schmid M, Gantner S, Stoffels M, Riedel K, Givskov M, Hartmann A, Langebartels C, Eberl L (2001) Visualization of N-acylhomoserine lactone-mediated cell-cell communication between bacteria colonizing the tomato rhizosphere. Appl Environ Microbiol 67:5761–5770PubMedCrossRefGoogle Scholar
  96. Steidle A, Allesen-Holm M, Riedel K, Berg G, Givskov M, Molin S, Eberl L (2002) Identification and characterization of an N-acylhomoserine lactone-dependent quorum-sensing system in Pseudomonas putida strain IsoF. Appl Environ Microbiol 68:6371–6382PubMedCrossRefGoogle Scholar
  97. Sturme MH, Kleerebezem M, Nakayama J, Akkermans AD, Vaugha EE, de Vos WM (2002) Cell to cell communication by autoinducing peptides in gram-positive bacteria. Antonie Van Leeuwenhoek 81:233–243PubMedCrossRefGoogle Scholar
  98. Swift S, Winson MK, Chan PF, Bainton NJ, Birdsall M, Reeves PJ, Rees CE, Chhabra SR, Hill PJ, Throup JP et al (1993) A novel strategy for the isolation of luxI homologues: evidence for the widespread distribution of a LuxR:LuxI superfamily in enteric bacteria. Mol Microbiol 10:511–520PubMedCrossRefGoogle Scholar
  99. Teplitski M, Robinson JB, Bauer WD (2000) Plants secrete substances that mimic bacterial. N-acyl homoserine lactone signal activities and affect population density-dependent behaviors in associated bacteria. Mol Plant Microbe Interact 13:637–648PubMedCrossRefGoogle Scholar
  100. Teplitski M, Chen H, Rajamani S, Gao M, Merighi M, Sayre RT, Robinson JB, Rolfe BG, Bauer WD (2004) Chlamydomonas reinhardtii secretes compounds that mimic bacterial signals and interfere with quorum sensing regulation in bacteria. Plant Physiol 134:137–146PubMedCrossRefGoogle Scholar
  101. Thomson NR, Crow MA, McGowan SJ, Cox A, Salmond GP (2000) Biosynthesis of carbapenem antibiotic and prodigiosin pigment in Serratia is under quorum sensing control. Mol Microbiol 36:539–556PubMedCrossRefGoogle Scholar
  102. Tun-Garrido C, Bustos P, Gonzalez V, Brom S (2003) Conjugative transfer of p42a from Rhizobium etli CFN42, which is required for mobilization of the symbiotic plasmid, is regulated by quorum sensing. J Bacteriol 185:1681–1692PubMedCrossRefGoogle Scholar
  103. Venturi V, Friscina A, Bertani I, Devescovi G, Aguilar C (2004a) Quorum sensing in the Burkholderia cepacia complex. Res Microbiol 155:238–244PubMedCrossRefGoogle Scholar
  104. Venturi V, Venuti C, Devescovi G, Lucchese C, Friscina A, Degrassi G, Aguilar C, Mazzucchi U (2004b) The plant pathogen Erwinia amylovora produces acyl-homoserine lactone signal molecules in vitro and in planta. FEMS Microbiol Lett 241:179–83PubMedCrossRefGoogle Scholar
  105. Von Bodman SB, Bauer WD, Coplin DL (2003) Quorum sensing in plant-pathogenic bacteria. Annu Rev Phytopathol 41:455–482PubMedCrossRefGoogle Scholar
  106. Wagner VE, Bushnell D, Passador L, Brooks AI, Iglewski BH (2003) Microarray analysis of Pseudomonas aeruginosa quorum-sensing regulons: effects of growth phase and environment. J Bacteriol 185:2080–2095PubMedCrossRefGoogle Scholar
  107. Whitehead NA, Barnard AM, Slater H, Simpson NJ, Salmond GP (2001) Quorum-sensing in Gram-negative bacteria. FEMS Microbiol Rev 25:365–404PubMedCrossRefGoogle Scholar
  108. Whiteley M, Lee KM, Greenberg EP (1999) Identification of genes controlled by quorum sensing in Pseudomonas aeruginosa. Proc Natl Acad Sci USA 96:13904–13909PubMedCrossRefGoogle Scholar
  109. Williams P, Bainton NJ, Swift S, Chhabra SR, Winson MK, Stewart GS, Salmond GP, Bycroft BW (1992) Small molecule-mediated density-dependent control of gene expression in prokaryotes: bioluminescence and the biosynthesis of carbapenem antibiotics. FEMS Microbiol Lett 79:161–167PubMedGoogle Scholar
  110. Wisniewski-Dye F, Jones J, Chhabra SR, Downie JA (2002) raiIR genes are part of a quorum-sensing network controlled by cinI and cinR in Rhizobium leguminosarum. J Bacteriol 184:1597–1606PubMedCrossRefGoogle Scholar
  111. Wood DW, Gong F, Daykin MM, Williams P, Pierson LS 3rd (1997) N-Acyl-homoserine lactone-mediated regulation of phenazine gene expression by Pseudomonas aureofaciens 30–84 in the wheat rhizosphere. J Bacteriol 179:7663–7670PubMedGoogle Scholar
  112. Yao F, Zhou H, Lessie TG (2002) Characterization of N-acyl homoserine lactone overproducing mutants of Burkholderia multivorans ATCC 17616. FEMS Microbiol Lett 206:201–207PubMedCrossRefGoogle Scholar
  113. Zhang Z, Pierson LS 3rd (2001) A second quorum-sensing system regulates cell surface properties but not phenazine antibiotic production in Pseudomonas aureofaciens. Appl Environ Microbiol 67:4305–4315PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Sara Ferluga
  • Laura Steindler
  • Vittorio Venturi
    • 1
  1. 1.Plant Bacteriology GroupInternational Centre for Genetic Engineering & BiotechnologyCa’ Tron di Roncade, TrevisoItaly

Personalised recommendations