Advertisement

Rhizosphere Metabolomics: Methods and Applications

  • Sheela Reuben
  • V. S. Bhinu
  • Sanjay Swarup
Part of the Soil Biology book series (SOILBIOL, volume 14)

The emerging field of rhizosphere metabolomics involves analysis of entire metabolite complement (metabolome), in an unbiased way to understand complex physiological, pathological, symbiotic and other relationships among the inhabitants of the rhizosphere. Metabolomic studies of the rhizosphere are quite challenging since the rhizosphere is a complex as well as a dynamic microenvironment. Metabolite composition in the rhizosphere is primarily governed by the nature of root exudates, secretions from rhizobacteria, fungi and other soil organisms. Conversely, the nature of these root exudates also directly or indirectly affects microbial growth in the rhizosphere. While some compounds enhance growth, others have antimicrobial activities. Apart from the diverse roles of compounds present, the complexity of the rhizosphere also stems from competition among rhizosphere microbes. Some of them are growth-promoting, while others are pathogenic. These effects are not only confined to the microbes but also extend to the plants growing in the rhizosphere. Hence, gaining knowledge of these rhizosphere metabolites as well as the effect of the biota will help us better understand this ecological niche.

Keywords

Nuclear Magnetic Resonance Root Exudate Nuclear Magnetic Resonance Spectroscopy Metabolomic Study Metabolomics Data 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bajic VB, Veronika M, Veladandi PS, Meka A, Heng M-W, Rajaraman K, Pan H, Swarup S (2005) Dragon Plant Biology Explorer. A text-mining tool for integrating associations between genetic and biochemical entities with genome annotation and biochemical terms lists. Plant Physiol 138:1914–1925PubMedCrossRefGoogle Scholar
  2. Bais HP, Weir TL, Perry LG, Gilroy S, Vivanco JM (2006) The role of root exudates in rhizosphere interactions with plants and other organisms. Annu Rev Plant Biol 57:233–266PubMedCrossRefGoogle Scholar
  3. Bending GD, Poole EJ, Whipps JM, Read DJ (2002) Characterisation of bacteria from Pinus sylvestris-Suillus luteus mycorrhizas and their effects on root-fungus interactions and plant growth. FEMS Microbiol Ecol 39:219–227PubMedGoogle Scholar
  4. Bhalla R, Narasimhan K, Swarup S (2005) Metabolomics and its role in understanding cellular responses in plants. Plant Cell Rep 24:562–571PubMedCrossRefGoogle Scholar
  5. Bode HB, Zeeck A, Plückhahn K, Jendrossek D (2000). Physiological and chemical investigtions into microbial degradation of synthetic poly (cis-1, 4-isoprene). Appl Environ Microbiol 66:3680–3685PubMedCrossRefGoogle Scholar
  6. Boersma MG, Solyanikova IP, Van Berkel WJ, Vervoort J, Golovleva LA, Rietjens IM (2001) 19F NMR metabolomics for the elucidation of microbial degradation pathways of fluorophenols. J Ind Microbiol Biotechnol 26:22–34CrossRefGoogle Scholar
  7. Bonnington L, Eljarrat E, Guillamón M, Eichhorn P, Taberner A, Barceló D (2003) Development of a liquid chromatography-electrospray-tandem mass spectrometry method for the quantitative determination of benzoxazinone derivatives in plants. Anal Chem 75:3128–3136PubMedCrossRefGoogle Scholar
  8. Cataldi TRI, Margiotta G, Iasi L, Di Chio B, Xiloyannis C, Bufo SA (2000) Determination of Sugar Compounds in olive plant extracts by anion-exchange chromatography with pulsed amperometric detection. Anal Chem 72:3902–3907PubMedCrossRefGoogle Scholar
  9. Chang H-K, Zylstra GJ (1998) Novel organization of the genes for phthalate degradation from Burkholderia cepacia DBO1. J Bacteriol 180:6529–6537PubMedGoogle Scholar
  10. Chin-A-Woeng TFC, van den Broek D, Lugtenberg BJJ, Bloemberg GV (2005) The Pseudomonas chlororaphis PCL1391 sigma regulator psrA represses the production of the antifungal metabolite phenazine-1-carboxamide. Mol Plant Microbe Interact 18:244–253PubMedCrossRefGoogle Scholar
  11. Czarnota MA, Rimando AM, Weston LA (2003). Evaluation of root exudates of seven sorghum accessions. J Chem Ecol 29(9):2073–2083PubMedCrossRefGoogle Scholar
  12. Dagley S (1981) New perspectives in aromatic catabolism. In: Leisinger T, Cook AM, Hütter R, Nüesch J (eds) Microbial degradation of xenobiotics and recalcitrant compounds. Academic, New York, pp 181–186Google Scholar
  13. Davies JI, Evans WC (1964) Oxidative metabolism of naphthalene by soil pseudomonads. Biochem J 91:251–261PubMedGoogle Scholar
  14. Derrien D, Balesdent J, Marol, Santaella C (2003) Measurement of the 13C/12C ratio of soil-plant individual sugars by gas chromatography/combustion/isotope-ratio mass spectrometry of silylated derivatives. Rapid Commun Mass Spectrom 17:2626–2631PubMedCrossRefGoogle Scholar
  15. Desbrosses GG, Kopka J, Udvardi MK (2005) Lotus japonicus metabolic profiling. Development of gas chromatography-mass spectrometry resources for the study of plant-microbe interactions. Plant Physiol 137:1302–1318PubMedCrossRefGoogle Scholar
  16. Dunn WB, Ellis DI (2005) Metabolomics: current analytical platforms and methodologies. Trends Anal Chem 24:285–294CrossRefGoogle Scholar
  17. Dunn WB, Bailey NJ, Johnson HE (2005) Measuring the metabolome: current analytical technologies. Analyst 130:606–625PubMedCrossRefGoogle Scholar
  18. Duran AL, Yang J, Wang L, Sumner LW (2003) Metabolomics spectral formatting, alignment and conversion tools (MSFACTs). Bioinformatics 19:2283–2293PubMedCrossRefGoogle Scholar
  19. Dutton PL, Evans WC (1967). Dissimilation of aromatic substrates by Rhodopseudomonas palustris. Biochem J 104:30–31Google Scholar
  20. Dutton PL, Evans WC (1969) The metabolism of aromatic compounds by Rhodopseudomonas palustris: a new reductive method of aromatic ring metabolism. Biochem J 113:525–536PubMedGoogle Scholar
  21. Eljarrat E, Barcelo D (2001) Sample handling and analysis of allelochemical compounds in plants. Trends Anal Chem 20:584–590CrossRefGoogle Scholar
  22. Evans CJ, Evershed RP (2003) Compound-specific stable isotope analysis of soil mesofauna using thermally assisted hydrolysis and methylation for ecological investigations Anal Chem 75:6056–6062PubMedCrossRefGoogle Scholar
  23. Evans WC, Fuchs G (1988) Anaerobic degradation of aromatic compounds. Annu Rev Microbiol 42:289–317PubMedCrossRefGoogle Scholar
  24. Fan TWM, Lane AN, Shenker M, Bartley JP, Crowley D, Higashi RM (2001) Comprehensive chemical profiling of gramineous plant root exudates using high resolution NMR and MS. Phytochemistry 57:209–221PubMedCrossRefGoogle Scholar
  25. Formanek P, Ambus P (2004) Assessing the use of delta C-13 natural abundance in separation of root and microbial respiration in a Danish beech (Fagus sylvatica L.) forest. Rapid Commun Mass Spectrom 18:897–902PubMedCrossRefGoogle Scholar
  26. Gibson DT, Subramanian V (1984) Microbial degradation of aromatic hydrocarbons. In Gibson DT (ed) Microbial degradation of organic compounds. Dekker, New York, pp 181–252Google Scholar
  27. Gibson J, Harwood CS (2002) Metabolic diversity in aromatic compound utilization by anerobic microbes. Annu Rev Microbiol 56:345–369PubMedCrossRefGoogle Scholar
  28. Gleye C, Laurens A, Hocquemiller R, Cave A, Laprevote O, Serani L (1997) Isolation of montecristin, a key metabolite in biogenesis of acetogenins from Annona muricata and its structure elucidation by using tandem mass spectrometry. J Org Chem 62:510–513PubMedCrossRefGoogle Scholar
  29. Goodacre R (2005) Making sense of the metabolome using evolutionary computation: seeing the wood with the trees. J Exp Bot 56:245–254PubMedCrossRefGoogle Scholar
  30. Goodacre R, Shann B, Gilbert RJ, Timmins EM, McGovern AC, Alsberg BK, Kell DB, Logan NA (2000) Detection of the dipicolinic acid biomarker in Bacillus spores using Curie-point pyrolysis mass spectrometry and Fourier transform infrared spectroscopy. Anal Chem 72:119–127PubMedCrossRefGoogle Scholar
  31. Goto S, Okuno Y, Hattori M, Nishioka T, Kanehisa M (2002) LIGAND: database of chemivcal compounds and reactions in biological pathways. Nucleic Acids Res 30:402–404PubMedCrossRefGoogle Scholar
  32. Griffin JL (2004) Metabolic profiles to define the genome: can we hear the phenotypes? Philos Trans R Soc Lond B Biol Sci 359:857–871PubMedCrossRefGoogle Scholar
  33. Harayama S, Timmis KN (1992) Aerobic biodegradation of aromatic hydrocarbons by bacteria. In: Sigel H, Sigel A (eds) Metal ions in biological systems, vol 28. Dekker, New York, pp 99–156Google Scholar
  34. Harwood CS, Parales RE (1996) The B-ketoadipate pathway and the biology of self-identity. Annu Rev Microbiol 50:553–590PubMedCrossRefGoogle Scholar
  35. Hollman PCH, van Trijp JMP, Buysman MNCP, Gaga MSVD, Mengelers MJB, Vries JHM, Katan MB (1997) Relative bioavailability of the antioxidant flavonoid quercetin from various foods in man. FEBS Lett 418:152–156PubMedCrossRefGoogle Scholar
  36. Hopper W, Mahadevan A (1991) Utilization of catechin and its metabolites by Bradyrhizobium japonicum. Appl Microbiol Biotechnol 35:411–415CrossRefGoogle Scholar
  37. Huang WE, Griffiths RI, Thompson IP, Bailey MJ, Whiteley AS (2004) Raman microscopic analysis of single microbial cells. Anal Chem 76:4452–4458PubMedCrossRefGoogle Scholar
  38. Inderjit (1996) Plant phenolics in allelopathy. Bot Rev 62:186–202CrossRefGoogle Scholar
  39. Inderjit, Duke SO (2003) Ecophysiological aspects of allelopathy. Planta 217:529–539PubMedCrossRefGoogle Scholar
  40. Jansen JJ, Hoefsloot HCJ, Boelens HFM, van der Greef J, Smilde AK (2004) Analysis of longitudinal metabolomics data. Bioinformatics 20:2438–2446PubMedCrossRefGoogle Scholar
  41. Jeffrey AM, Knight M, Evans WC (1972a) The bacterial degradation of flavonoids: hydroxylation of the A-ring of taxifolin by a soil pseudomonad. Biochem J 130:373–380PubMedGoogle Scholar
  42. Jeffrey AM, Jerina DM, Self R, Evans WC (1972b) The bacterial degradation of flavonoids: oxidative fission of the A-ring of dihydrogossypetin by a Pseudomonas sp. Biochem J 130:383–390PubMedGoogle Scholar
  43. Jenkins H, Hardy N, Beckmann M, Draper J, Smith A, Taylor J et al. (2004) A proposed framework for the description of plant metyabolomics experiments and their results. Nat Biotechnol 22:1601–1607PubMedCrossRefGoogle Scholar
  44. Jonsson P, Gullberg J, Nordstrom A, Kusano M, Kowalczyk M, Sjostrom M, Moritz T (2004) A strategy for identifying differences in large series of metabolomic samples analyzed by GC/MS. Anal Chem 76:1738–1745PubMedCrossRefGoogle Scholar
  45. Jonsson P, Bruce SJ, Moritz T, Trygg J, Sjöström M, Plumb R, Granger J, Maibaum J, Nicholson JK, Holmes E, Antti H (2005) Extraction, interpretation and validation of information for comparing samples in metabolic LC/MS data sets. Analyst 130:701–707PubMedCrossRefGoogle Scholar
  46. Kachlicki P, Marczak L, Kerhoas L, Einhorn J, Stobiecki M (2005) Profiling isoflavone conjugates in root extracts of lupine species with LC/ESI/MSn systems. J Mass Spectrom 40:1088–1103PubMedCrossRefGoogle Scholar
  47. Kanaly RA, Harayama S (2000) Biodegradation of high-molecular-weight polycyclic aromatic hydrocarbons by bacteria. J Bacteriol 182:2059–2067PubMedCrossRefGoogle Scholar
  48. Kanehisa M, Goto S, Kawashima S, Okuno Y, Hattori M (2004) The KEGG resource for deciphering the genome Nucleic Acids Rese 32:D277–D280CrossRefGoogle Scholar
  49. Kanehisa M, Goto S, Hattori M, Aoki-Kinoshita KF, Itoh M, Kawashima S, Katayama T, Araki M, Hirakawa M (2006) From genomics to chemical genomics: new developments in KEGG. Nucleic Acids Res 34:D354–D357PubMedCrossRefGoogle Scholar
  50. Katajamaa M, Oresic M (2005) Processing methods for differential analysis of LC/MS profile data. BMC Bioinformatics 6:179PubMedCrossRefGoogle Scholar
  51. Kerry BR (2000) Rhizosphere interactions and the exploitation of microbial agents for the biological control of plant parasitic nematodes. Annu Rev Phytopathol 38:423–441PubMedCrossRefGoogle Scholar
  52. Krishnan P, Kruger NJ, Ratcliffe RG (2005) Metabolite fingerprinting and profiling in plants using NMR. J Exp Bot 56:255–265PubMedCrossRefGoogle Scholar
  53. Kuiper I, Lagendijk EL, Bloemberg GV, Lugtenberg BJJ (2004) Rhizoremediation: a beneficial plant-microbe interaction. Mol Plant Microbe Interact 17 6–15PubMedCrossRefGoogle Scholar
  54. Lange BM, Ghassemian M (2005) Comprehensive post-genomic data analysis approaches integrating biochemical pathway maps. Phytochemistry 66:413–451PubMedCrossRefGoogle Scholar
  55. López-Díez EC, Goodacre R (2004) Characterization of microorganisms using UV resonance raman spectroscopy and chemometrics. Anal Chem 76:585–591PubMedCrossRefGoogle Scholar
  56. Martens H, Naes T (1989) Multivariate calibration. Wiley, New YorkGoogle Scholar
  57. Mendes P (2002) Emerging bioinformatics for the metabolome. Brief Bioinformatics 3:134–145PubMedCrossRefGoogle Scholar
  58. Menotta M, Gioacchini AM, Amicucci A, Buffalini M, Sisti D, Stocchi V (2004) Headspace solid-phase microextraction with gas chromatography and mass spectrometry in the investigation of volatile organic compounds in an ectomycorrhizae synthesis system. Rapid Commun Mass Spectrom 18:206–210PubMedCrossRefGoogle Scholar
  59. Mesnard F, Ratcliffe RG (2005) NMR analysis of plant nitrogen metabolism. Photosynth Res 83:163–180PubMedCrossRefGoogle Scholar
  60. Mueller LA, Zhang P, Rhee SY (2003) AraCyc: a biochemical pathway database for Arabidopsis. Plant Physiol 132:453–460PubMedCrossRefGoogle Scholar
  61. Mukerji KG, Manoharachary C, Singh J (eds) (2006) Microbial activity in the rhizosphere. Soil biology, vol 7, Springer, HeidelbergGoogle Scholar
  62. Narasimhan K, Basheer C, Bajic VB, Swarup S (2003) Enhancement of plant-microbe interactions using a rhizosphere metabolomics-driven approach and its application in the removal of polychlorinated biphenyls. Plant Physiol 132:146–153PubMedCrossRefGoogle Scholar
  63. O’Connell KP, Goodman RM, Handelsman J (1996) Engineering the rhizosphere: expressing a bias. Trends Biotechnol 14:83–88CrossRefGoogle Scholar
  64. Oger P, Petit A, Dessaux Y (1997) Genetically engineered plants producing opines alter their biological environment. Nature biotechnology 15:369–372PubMedCrossRefGoogle Scholar
  65. Pasteur L (1857) Mémoire sur la fermentation appelée lactique. Mém Soc Sci Agric Arts 5:13–37Google Scholar
  66. Perera MR, Vanstone VA, Jones MGK (2005) A novel approach to identify plant parasitic nematodes using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Rapid Commun Mass Spectrom 19:1454–1460PubMedCrossRefGoogle Scholar
  67. Pfeffer PE, Rolin DB, Schimdt JH, Tu SI, Kumosinski TF, Douds DD (1992) Ion transport and subcellular compartmentation in maize root tissue as examined by in vivo CS-133 NMR spectroscopy. J Plant Nutr 15:913–927CrossRefGoogle Scholar
  68. Pillai BVS, Swarup S (2002) Elucidation of the flavonoid catabolism pathway in Pseudomonas putida PML2 strain by comparative metabolic profiling. Appl Environ Microbiol 68:143–151PubMedCrossRefGoogle Scholar
  69. Pinton R, Varanni Z, Nannipier Pi, Willig W (eds) (2000) The rhizosphere: biochemistry and organic dubstance at the soil-plant interface. Dekker, New YorkGoogle Scholar
  70. Rao RJ, Cooper JE (1994) Rhizobia catabolize nod gene-inducing flavonoids via C-ring fission mechanisms. J Bacteriol 176:5409–5413PubMedGoogle Scholar
  71. Rao RJ, Sharma ND, Hamilton JTG, Boyd DR, Cooper JE (1991) Biotransformation of the pentahydroxy flavone quercetin by Rhizobium loti and Bradyrhizobium strains (Lotus). Appl Environ Microbiol 57:1563–1565PubMedGoogle Scholar
  72. Ratcliffe RG, Shachar-Hill Y (2005) Revealing metabolic phenotypes in plants: inputs from NMR analysis. Biol Rev Camb Philos Soc 80:27–43PubMedCrossRefGoogle Scholar
  73. Reo NV (2002) NMR-based metabolomics. Drug Chem Toxicol 25:375–382PubMedCrossRefGoogle Scholar
  74. Rice EL (1984) Allelopathy 2nd edn. Academic, OrlandoGoogle Scholar
  75. Rugh CL, Susilawati E, Kravchenko AN, Thomas JC (2005) Biodegrader metabolic expansion during polyaromatic hydrocarbons rhizoremediation. Z Naturforsch C 60:331–339PubMedGoogle Scholar
  76. Ryals J (2004) Drug discovery metabolomics. Metabolomics–an important emerging science. Business briefing: Pharmatech 51–54Google Scholar
  77. Shultz E, Engle FE, Wood JM (1974) New oxygenases in the degradation of flavones and flavonones by Pseudomonas putida. Biochemistry 13:1768–1776CrossRefGoogle Scholar
  78. Siciliano SD, Fortin N, Mihoc A, Wisse G, Labelle S, Beaumier D, Ouellette D, Roy R, Whyte LG, Banks MK, Schwab P, Lee K, Greer CW (2001) Selection of specific endophytic bacterial genotypes by plants in response to soil contamination. Appl Environ Microbiol 67:2469–2475PubMedCrossRefGoogle Scholar
  79. Smilde AK, Jansen JJ, Hoefsloot HCJ, Lamers R-J AN, van der Greef J, Timmerman ME (2005) ANOVA-Simultaneous component analysis (ASCA): a new tool for analyzing designed metabolomics data. Bioinformatics 21:3043–3048PubMedCrossRefGoogle Scholar
  80. Spaink HP, Wijfjes AHM, Vanvliet TB, Kijne JW, Lugtenberg BJJ (1993) Rhizobial lipo-oligosaccharide signals and their role in plant morphogenesis are analogous lipophilic chitin derivatives produced by the plant. Aust J Plant Physiol 20:381–392CrossRefGoogle Scholar
  81. Steeghs M, Bais HP, de Gouw J et al. (2004) Proton-transfer-reaction mass spectrometry as a new tool for real time analysis of root-secreted volatile organic compounds in Arabidopsis. Plant Physiol 135:47–58PubMedCrossRefGoogle Scholar
  82. Sumner LW, Mendes P, Dixon RA (2003) Plant metabolomics: large-scale phytochemistry in the functional genomics era Phytochemistry 62:817–836PubMedCrossRefGoogle Scholar
  83. Tarvin D, Buswell AM (1934) The methane fermentation of organic acids and carbohydrates. J Am Chem Soc 56:1751–1755CrossRefGoogle Scholar
  84. The Standard Metabolic Reporting Structures Working Group (2005) Summary Recommendations for standardization and reporting of metabolic analyses. Nat Biotechnol 23:833–839CrossRefGoogle Scholar
  85. van der Meer JR, de Vos WM, Harayama S, Zehnder AJB (1992) Molecular mechanisms of genetic adaptation to xenobiotic compounds. Microbiol Rev 56:677–694PubMedGoogle Scholar
  86. van der Werf MJ, Jellema RH, Hankemeier T (2005) Microbial metabolomics: replacing trial-and-error by the unbiased selection and ranking of targets. J Ind Microbiol Biotechnol 32:234–252PubMedCrossRefGoogle Scholar
  87. Villas-Boas SG, Rasmussen S, Lane GA (2005) Metabolomics or metabolite profiles? Trends Biotechnol 23:385–386PubMedCrossRefGoogle Scholar
  88. Walker TS, Bais HP, Halligan KM, Stermitz FR, Vivanco JM (2003) Metabolic profiling of root exudates of Arabidopsis thaliana. J Agric Food Chem 51:2548–2554PubMedCrossRefGoogle Scholar
  89. Warhurst AM, Clarke KF, Hill RA, Holt RA, Fewson CA (1994) Metabolism of styrene by Rhodococcus rhodochrous NCIMB 13259. Appl Environ Microbiol 60:1137–1145PubMedGoogle Scholar
  90. Weir TL, Park SW, Vivanco JM (2004) Biochemical and physiological mechanisms mediated by allelochemicals. Curr Opin Plant Biol 7:472–479PubMedCrossRefGoogle Scholar
  91. Weidenhamer JD (2005). Biomimetic measurement of allelochemical dynamics in the rhizosphere. J Chem Ecol 31(2):221–236PubMedCrossRefGoogle Scholar
  92. Sun W, Liu S, Liu Z, Song F, Fang S (1998) A study of Aconitum alkaloids from aconite roots in Aconitum carmichaeli Debx using matrix-assisted laser desorption/ionization mass spectrometry. Rapid Commun Mass Spectrom 12:821–824CrossRefGoogle Scholar
  93. Wittig U, De Beuckelaer A (2001) Analysis and comparison of metabolic pathway databases. Brief Bioinformatics 2:126–142PubMedCrossRefGoogle Scholar
  94. Young LY, Frazer AC (1987) The fate of lignin and lignin-derived compounds in anaerobic ecosystems. Geomicrobiol J 5:261–293CrossRefGoogle Scholar
  95. Zhang P, Foerster H, Tissier CP, Mueller L, Paley S, Karp PD, Rhee SY (2005) MetaCyc and AraCyc. Metabolic pathway databases for plant research. Plant Physiol 138:27–37PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Sheela Reuben
  • V. S. Bhinu
  • Sanjay Swarup
    • 1
  1. 1.Small Molecule Biology Laboratory, Department of Biological SciencesNational University of SingaporeSingapore

Personalised recommendations