Skip to main content

Secondary Metabolites Derived from Fatty Acids and Carbohydrates

  • Chapter
Solanaceae and Convolvulaceae: Secondary Metabolites

Seeds of species from this family contain 15–40% fatty oil. Linoleic acid [18:2 (n-6)] was found to be usually the major fatty acid component in genera such as Atropa, Datura, Hyoscyamus, Physalis, and Solanum (Hegnauer 1973 and references therein). In a comprehensive study the fatty acid composition of the seeds of 62 Nicotiana spp. (content: 25–40% on a dry weight basis) and of the leaves of 56 Nicotiana spp. (2.1–4.4%) were presented (Koiwai et al. 1983). α-Linolenic acid [18:3 (n-3)], the most abundant plant fatty acid, also was the dominant fatty acid in the leaves of all Nicotiana species (50–63%) whereas it predominated at least in the seeds of most species. Another report has been published with detailed information on the fatty acid composition of the seed oil of Capsicum annuum L. (Bekker et al. 2001). The fatty acid composition of the seed oils was also reported from, e.g, Bouchetia anomala (Miers) Britton & Rusby (Maestri and Guzman 1991), Grabowskia duplicata Arnott (Maestri et al. 1992), and Phrodus microphyllus (Miers) Miers (Maestri et al. 1994). Complete triglyceride types of seed oils from certain cultivated plants of the Solanaceae such as Physalis pubescens L., P. philadelphica Lam. sub nom. P. ixocarpa Brot., C. annuum, Solanum lycopersicum L. sub nom. Lycopersicon esculentum Mill., S. melongena L., and S. nigrum L. have been reported (Deineka and Deineka 2004).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 269.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 349.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Achnine L, Pereda-Miranda R, Iglesias-Prieto R, Moreno-Sanchez R, Lotina-Hennsen B (1999) Tricolorin A, a potent natural uncoupler and inhibitor of photosystem II acceptor side of spinach chloroplasts. Physiol Plant 106:246–252

    Article  CAS  Google Scholar 

  • Anaya AL, Calera MR, Mata R, Pereda-Miranda R (1990) Allelopathic potential of compounds isolated from Ipomoea tricolor CAV. (Convolvulaceae). J Chem Ecol 16:2145–2152

    Article  CAS  Google Scholar 

  • Anaya AL, Sabourin DJ, Hernandez-Bautista BE, Mendez I (1995) Allelopathic potential of Ipomoea tricolor (Convolvulaceae) in a greenhouse experiment. J Chem Ecol 21:1085–1102

    Article  CAS  Google Scholar 

  • Arrendale RF, Severson RF, Sisson VA, Costello CE, Leary JA, Himmelsbach DS, van Halbeek H (1990) Characterization of the sucrose ester fraction from Nicotiana glutinosa. J Agric Food Chem 38:75–85

    Article  CAS  Google Scholar 

  • Asahina Y, Shimidzu T (1922) Chemische Untersuchung des Samens von Pharbitis nil CHOIS. II. Mitt. Chem Zentralbl 976

    Google Scholar 

  • Asahina Y, Terada SX (1919) Constituents of the seeds of Pharbitis nil Chois. Yakugaku Zasshi 452:821

    CAS  Google Scholar 

  • Asilbekova DT (2003) Lipids from Capsicum annuum seeds. Chem Nat Comp 39:528–530

    Article  CAS  Google Scholar 

  • Asilbekova DT (2004) Glycolipids from Capsicum annuum. Chem Nat Comp 40:115–117

    Article  CAS  Google Scholar 

  • Austin DF (1982) 165. Convolvulaceae. In: Harling G, Sparre B (eds) Flora of Ecuador, vol 15. Swedish Research Councils, Stockholm

    Google Scholar 

  • Austin DF, Huáman Z (1996) A synopsis of Ipomoea (Convolvulaceae) in the Americas. Taxon 45:3–38

    Article  Google Scholar 

  • Auterhoff H, Demleitner H (1955) Vergleichende Untersuchungen an Convolvulaceen-Harzen. Arzneim Forsch 5:402–407

    CAS  Google Scholar 

  • Bah M, Pereda-Miranda R (1996) Detailed FAB-mass spectrometry and high resolution NMR investigations of tricolorins A–E, individual oligosaccharides from the resins of Ipomoea tricolor (Convolvulaceae). Tetrahedron 52:13063–13080

    Article  CAS  Google Scholar 

  • Bah M, Pereda-Miranda R (1997) Isolation and structural characterization of new glycolipid ester type dimers from the resin of Ipomoea tricolor (Convolvulaceae). Tetrahedron 53:9007–9022

    Article  CAS  Google Scholar 

  • Baldwin IT, Halitschke R, Paschold A, von Dahl CC, Preston CA (2006) Volatile signalling in plant-plant interactions: “talking trees” in the genome era. Science 311:812–815

    Article  PubMed  CAS  Google Scholar 

  • Barnes CC, Smalley MK, Manfredi KP, Kindscher K, Loring H, Sheeley DM (2003) Characterization of an anti-tuberculosis resin glycoside from the prairie medicinal plant Ipomoea leptophylla. J Nat Prod 66:1457–1462

    Article  PubMed  CAS  Google Scholar 

  • Bauer KH, Junge R (1934) Zur Kenntnis des Skammoniumharzes. Arch Pharm 272:841–848

    Article  CAS  Google Scholar 

  • Begum AS, Rai UK, Singh S, Sahai M (2004) New pairs of acyl sucroses from Petunia nyctaginiflora JUSS. J Indian Chem Soc 81:495–500

    CAS  Google Scholar 

  • Begum AS, Singh AP, Sahai M, Singh S, Fujimoto Y (2005) Two novel acyl sucroses from Petunia nyctaginiflora. Indian J Chem 44B:648–650

    CAS  Google Scholar 

  • Bekker NP, Ul’chenko NT, Glushenkova AI (2001) Physicochemical properties and composition of lipids from Capsicum annuum. Chem Nat Comp 37:131–133

    Article  CAS  Google Scholar 

  • Belkin M, Fitzgerald DB, Cogan GW (1952) Tumor-damaging capacity of plant materials. I. Plants used as cathartics. J Nation Canc Inst 13:139–155

    CAS  Google Scholar 

  • Bieber LW, da Silva Filho AA, Corrêa Lima RMO, de Andrade Chiappeta A, do Nascimento SC, de Souza IA, de Méllo, Veith HJ (1986) Anticancer and antimicrobial glycosides from Ipomoea bahiensis. Phytochemistry 25:1077–1081

    Article  CAS  Google Scholar 

  • Buttery RG, Ling LC (1993) Volatile components of tomato fruit and plant parts: relationship and biogenesis. ACS Symposium Ser vol. 525, American Chemical Society, Washington, DC, pp 23–34

    Google Scholar 

  • Cadet de Gassicourt L (1817) J pharmacie 3:495; fide Shellard EJ (1961a)

    Google Scholar 

  • Cao S, Guza RC, Wisse JH, Miller JS, Evans R, Kingston DGI (2005) Ipomoeassins A–E, cytotoxic macrocyclic glycoresins from the leaves of Ipomoea squamosa from the Suriname rainforest. J Nat Prod 68:487–492

    Article  PubMed  CAS  Google Scholar 

  • Castelli MV, Cortés JCG, Escalante AM, Bah M, Pereda-Miranda R, Ribas JC, Zacchino SA (2002) In vitro inhibition of 1, 3-β-glucan synthase by glycolipids from convolvulaceous species. Planta Med 68:739–742

    Article  PubMed  CAS  Google Scholar 

  • Chérigo L, Pereda-Miranda R (2006) Resin glycosides from the flowers of Ipomoea murucoides. J Nat Prod 69:595–599

    Article  PubMed  CAS  Google Scholar 

  • Christensen BV, Reese JA (1938) A study of the leaves of Ipomoea pes-caprae. J Am Pharmaceut Ass 27:195–199

    Article  CAS  Google Scholar 

  • DAB 6 (Deutsches Arzneibuch, 6th edn) (1926) R v Decker’s Verlag, G Schenck, Hamburg, Germany

    Google Scholar 

  • DAB 7 (Deutsches Arzneibuch, 7th edn) (1968) Deutscher Apotheker-Verlag, Stuttgart / Govi-Verlag, Frankfurt, Germany

    Google Scholar 

  • Davies LA, Adams R (1928) Structures of convolvulinolic and jalapinolic acids. Synthesis of 11-hydroxypentadecanoic and 11-hydroxyhexadecanoic acid. J Amer Chem Soc 50:1749–1755

    Article  CAS  Google Scholar 

  • De Balogh KIM, Dimande AP, van der Lugt JJ, Molyneux RJ, Naudé TW, Welman WG (1999) A lysosomal storage disease induced by Ipomoea carnea in goats in Mozambique. J Veter Diagn Inv 11:266–273

    CAS  Google Scholar 

  • Deharo E, Sauvain M, Moretti C, Richard B, Ruiz E, Massiot G (1992) Antimalarial effect of n-hentriacontanol isolated from Cuatresia sp. (Solanaceae). Anal Parasit Hum Compar 67:126–127

    CAS  Google Scholar 

  • Deineka VI, Deineka LA (2004) Triglyceride types of seed oils. I. Certain cultivated plants of the Solabaceae family. Chem Nat Comp 40:184–185

    Article  CAS  Google Scholar 

  • De Marino S, Borbone N, Gala F, Zollo F, Fico G, Pagiotti R, Iorizzi M (2006) New constituents of sweet Capsicum annuum L. fruits and evaluation of their biological activity. J Agric Food Chem 54:7508–7516

    Article  PubMed  CAS  Google Scholar 

  • Deroin T (2001) 171. Convolvulaceae. In: Morat P (ed) Flore de Madagascar et des Comores. Muséum National d’Histoire Naturelle, Paris

    Google Scholar 

  • Dini I, Tenore GC, Trimarco E, Dini A (2006) Seven new aminoacyl sugars in Ipomoea batatas. J Agric Food Chem 54:6089–6093

    Article  PubMed  CAS  Google Scholar 

  • Dorling PR, Colegate SM, Allen JG, Nickels R, Mitchell AA, Main DC, Madin B (2004) Calystegines isolated from Ipomoea spp. possibly associated with an ataxia syndrome in cattle in north Western Australia. In: Acamovic T, Stewart CS, Pennycott TW (eds) Poisonous plants and related toxins. CABI Publishing, Wallingford, UK, pp 140–145

    Chapter  Google Scholar 

  • Du XM, Kohinata K (née Tsuji), Kawasaki T, Guo YT, Miyahara K (1998) Resin glycosides. XXVI. Components of the ether-insoluble glycoside-like fraction from Cuscuta chinensis. Phytochemistry 48:843–850

    Article  PubMed  CAS  Google Scholar 

  • Du XM, Sun NY, Nishi M, Kawasaki T, Guo YT, Miyahara K (1999) Components of the ether-insoluble resin glycoside fraction from the seed of Cuscuta australis. J Nat Prod 62:722–725

    Article  PubMed  CAS  Google Scholar 

  • Duke SO, Baerson SR, Dayan FE, Rimando AM, Scheffler BE, Tellez MR, Wedge DE, Schrader KK, Akey DH, Arthur FH, de Lucca AJ, Gibson DM, Harrison HF Jr, Peterson JK, Gealy DR, Tworkoski T, Wilson CL, Morris JB (2003) United States Department of Agriculture–Agricultural Research Service research on natural products for pest management. Pest Manag Sci 59:708–717

    Article  PubMed  CAS  Google Scholar 

  • Enriquez RG, León I, Perez F, Walls F, Carpenter KA, Puzzuoli FV, Reynolds WF (1992) Characterization, by two-dimensional NMR spectroscopy, of a complex tetrasaccharide glycoside isolated from Ipomoea stans. Can J Chem 70:1000–1008

    Article  CAS  Google Scholar 

  • Evans WC, Somanabandhu A (1980) Nitrogen-containing non-steroidal secondary metabolites of Solanum, Cyphomandra, Lycianthes and Margaranthus. Phytochemistry 19:2351–2356

    Article  CAS  Google Scholar 

  • Fürstner A, Müller T (1999) Efficient total synthesis of resin glycosides and analogues by ring-closing olefin metathesis. J Am Chem Soc 121:7814–7821

    Article  CAS  Google Scholar 

  • Gaspar EMM (1999) New pentasaccharide macrolactone from the European Convolvulaceae Calystegia soldanella. Tetrahedron Lett 40:6861–6864

    Article  CAS  Google Scholar 

  • Gaspar EMM (2001) Soldanelline B–the first acylated nonlinear tetrasaccharide macrolactone from the European Convolvulaceae Calystegia soldanella. Eur J Org Chem:369–373

    Google Scholar 

  • Genest K, Sahasrabudhe MR (1966) Alkaloids and lipids of Ipomoea, Rivea and Convolvulus and their application to chemotaxonomy. Econ Bot 20:416–428

    CAS  Google Scholar 

  • Graf E, Bühle H (1974a) Zur Struktur der Rhamnoconvolvulinsäure. I. Isolierung der Rhamnoconvolvulinsäure C und strukturbeweisende Synthese ihres Aglykons. Arch Pharm 307:628–635

    Article  CAS  Google Scholar 

  • Graf E, Bühle H (1974b) Zur Struktur der Rhamnoconvolvulinsäure. II. Untersuchung des Zuckeranteils von Rhamnoconvolvulinsäure C. Arch Pharm 307:636–643

    Article  CAS  Google Scholar 

  • Graf E, Dahlke E (1964) Über die Exogonsäure. Planta Med 12:293–295

    Article  CAS  Google Scholar 

  • Graf E, Dahlke E, Voigtländer HW (1965) Über die Convolvuline; neue Bausteine und Unterscheidungsreaktionen. Arch Pharm 298:81–91

    Article  CAS  Google Scholar 

  • Hagentorn (1857) Pharmacologische Untersuchungen einiger Convolvulaceenharze, Dorpat (today Tartu/Estonia); fide Spirgatis (1860)

    Google Scholar 

  • Halitschke R, Baldwin IT (2005) Jasmonates and related compounds in plant-insect interactions J Plant Growth Regul 23:238–245

    Google Scholar 

  • Haraguchi M, Gorniak SL, Ikeda K, Minami Y, Kato A, Watson AA, Nash RJ, Molyneux RJ, Asano N (2003) Alkaloidal components in the poisonous plant, Ipomoea carnea (Convolvulaceae). J Agric Food Chem 51:4995–5000

    Article  PubMed  CAS  Google Scholar 

  • Hartwell JL (1968) Plants used against cancer. A survey. Lloydia/J Nat Prod 31:158–163

    Google Scholar 

  • Hegnauer R (1964) Chemotaxonomie der Pflanzen, vol 3. Birkhäuser Verlag, Basel, Switzerland, pp 557–558

    Google Scholar 

  • Hegnauer R (1973) Chemotaxonomie der Pflanzen, vol 6. Birkhäuser Verlag, Basel, Switzerland, pp 439–440

    Google Scholar 

  • Hegnauer R (1989) Chemotaxonomie der Pflanzen, vol 8. Birkhäuser Verlag, Basel, Switzerland, pp 321–322

    Google Scholar 

  • Heinrich G (1918) Zur Kenntnis des biologischen Verhaltens von Convolvulin und Jalapin. Biochem Z 88:13–34

    CAS  Google Scholar 

  • Hernández-Carlos B, Bye R, Pereda-Miranda R (1999) Orizabins V–VIII, tetrasaccharide glycolipids from the Mexican scammony root (Ipomoea orizabensis). J Nat Prod 62:1096–1100

    Article  PubMed  CAS  Google Scholar 

  • Herrera-Salgado Y, Garduno-Ramirez ML, Vázquez L, Rios MY, Alvarez L (2005) Myo-inositol-derived glycolipids with anti-inflammatory activity from Solanum lanceolatum. J Nat Prod 68:1031–1036

    Article  PubMed  CAS  Google Scholar 

  • Hilal SH, Haggag MY, Soliman FM, El-Kashoury ESA (1983) Phytochemical study and biological screening of Convolvulus lanatus VAHL. Egypt J Pharm Sci 24:139–148

    CAS  Google Scholar 

  • Hoehnel M (1896) Ueber das Convolvulin, das Glycosid der Tubera Jalapae (Ipomoea purga Hayne). Arch Pharm 234:647–685

    Article  CAS  Google Scholar 

  • Hosamani KM, Sattigeri RM (2000) Industrial utilization of Rivea ornata seed oil. A moderate source of vernolic acid. Indust Crops Prod 12:93–96

    Article  CAS  Google Scholar 

  • Husemann A, Hilger A, Husemann T (1884) Die Pflanzenstoffe in chemischer, physiologischer, pharmakologischer und toxikologischer Hinsicht, vol 2. Verlag von Julius Springer, Berlin, Germany, pp 1138–1145

    Google Scholar 

  • Iorizzi M, Lanzotti V, De Marino S, Zollo F, Blanco-Molina M, Macho A, Muñoz E (2001) New glycosides from Capsicum annuum L. var. acuminatum. Isolation, structure determination, and biological activity. J Agric Food Chem 49:2022–2029

    Article  PubMed  CAS  Google Scholar 

  • Jackson DM, Peterson JK (2000) Sublethal effects of resin glycosides from the periderm of sweet potato storage roots on Plutella xylostella (Lepidoptera: Plutellidae). J Econ Entomol 93:388–393

    Article  PubMed  CAS  Google Scholar 

  • Jackson DM, Severson RF, Sisson VA, Stephenson MG (1991) Ovipositional response of tobacco budworm moths (Lepidoptera: Noctuidae) to cuticular labdanes and sucrose esters from the green leaves of Nicotiana glutinosa L. (Solanaceae). J Chem Ecol 17:2489–2506

    Article  CAS  Google Scholar 

  • Jaretzky R, Risse E (1940a) Radix und Herba Convolvuli sepii ein einheimischer Ersatz für Tubera Jalapae. Arch Pharm 278:241–252

    CAS  Google Scholar 

  • Jaretzky R, Risse E (1940b) Beiträge zur Chemie verschiedener Convolvulaceenharze. Arch Pharm 278:379–389

    CAS  Google Scholar 

  • Jayaprakasam B, Strasburg GA, Nair MG (2004) Potent lipid peroxidation inhibitors from Withania somnifera fruits. Tetrahedron 60:3109–3121

    Article  CAS  Google Scholar 

  • Johnston JFW (1840) Philos Trans Roy Soc, London A 341; fide Noda et al. (1990)

    Google Scholar 

  • Judd WS, Campbell CS, Kellogg EA, Stevens PF (1999) Plant systematics–a phylogenetic approach. Sinauer Associates, Inc, Sunderland, MA, USA, p 359

    Google Scholar 

  • Kawasaki T (1950) Structure of convolvulinolic acid and its related compounds. Yakugaku Zasshi 70:485–490

    CAS  Google Scholar 

  • Kawasaki T, Okabe H, Nakatsuka I (1971) Studies on resin glycosides. I. Reinvestigation of the components of pharbitin, a resin glycoside of the seeds of Pharbitis nil CHOISY. Chem Pharm Bull 19:1144–1149

    CAS  Google Scholar 

  • Kayser GA (1844) Chemische Untersuchung des Jalappenharzes. Liebigs Ann Chem 51:81–105

    Google Scholar 

  • Khanna SN, Gupta PC (1967) Structure of muricatin. Phytochemistry 6:735–739

    Article  CAS  Google Scholar 

  • King RR, Singh RP, Calhoun LA (1987) Isolation and characterization of 3, 3′, 4, 6-tetra-O-acylated sucrose esters from the type B glandular trichomes of Solanum berthaultii HAWKES (PI 265857). Carbohydrate Res 166:113–121

    Article  CAS  Google Scholar 

  • King RR, Calhoun LA (1988) 2, 3-Di-O- and 1, 2, 3-tri-O-acylated glucose esters from the glandular trichomes of Datura metel. Phytochemistry 27:3761–3763

    Article  CAS  Google Scholar 

  • King RR, Calhoun LA, Singh RP, Boucher A (1990) Sucrose esters associated with glandular trichomes of wild Lycopersicon species. Phytochemistry 29:2115–2118

    Article  CAS  Google Scholar 

  • King RR, Calhoun LA, Singh RP, Boucher A (1993) Characterization of 2, 3, 4, 3′-tetra-O-acylated sucrose esters associated with the glandular trichomes of Lycopersicon typicum. J Agric Food Chem 41:469–473

    Article  CAS  Google Scholar 

  • Kitagawa I, Shibuya H, Yokokawa Y, Baek NI, Ohashi K, Yoshikawa M, Nitta A, Wiriadinata H (1988) Structures of merremosides B and D, new antiserotonic resin-glycosides from the tuber of Merremia mammosa, an Indonesian folk medicine. Chem Pharm Bull 36:1618–1621

    PubMed  CAS  Google Scholar 

  • Kitagawa I, Baek NI, Ohashi K, Sakagami M, Yoshikawa M, Shibuya H (1989a) Mammosides B and H1, new ionophoric resin-glycosides from the tuber of Merremia mammosa, an Indonesian folk medicine. Chem Pharm Bull 37:1131–1133

    CAS  Google Scholar 

  • Kitagawa I, Ohashi K, Koyama W, Kawanishi H, Yamamoto T, Nishino T, Shibuya H (1989b) A new method for measuring ionophoretic activity using a glass-cell apparatus equipped with artificial membranes. Chem Pharm Bull 37:1416–1418

    CAS  Google Scholar 

  • Kitagawa I, Ohashi K, Kawanishi H, Shibuya H, Shinkai K, Akedo H (1989c) Ionophoretic activities of oligopeptide lactones and resin-glycosides in human erythrocytes. Chem Pharm Bull 37:1679–1681

    PubMed  CAS  Google Scholar 

  • Kitagawa I, Baek NI, Kawashima K, Yokokawa Y, Yoshikawa M, Ohashi K, Shibuya H (1996a) Indonesian medicinal plants. XV. Chemical structures of five new resin-glycosides, merremosides a, b, c, d, and e, from the tuber of Merremia mammosa (Convolvulaceae). Chem Pharm Bull 44:1680–1692

    PubMed  CAS  Google Scholar 

  • Kitagawa I, Baek NI, Kawashima K, Yokokawa Y, Yoshikawa M, Ohashi K, Shibuya H (1996b) Indonesian medicinal plants. XVI. Chemical structures of four new resin-glycosides, merremosides f, g, h1, and h2, from the tuber of Merremia mammosa (Convolvulaceae). Chem Pharm Bull 44:1693–1699

    PubMed  CAS  Google Scholar 

  • Kitagawa I, Ohashi K, Baek NI, Sakagami M, Yoshikawa M, Shibuya H (1997) Indonesian medicinal plants. XIX. Chemical structures of four additional resin-glycosides, mammosides A, B, H1, and H2, from the tuber of Merremia mammosa (Convolvulaceae). Chem Pharm Bull 45:786–794

    PubMed  CAS  Google Scholar 

  • Kogetsu H, Noda N, Kawasaki T, Miyahara K (1991) Scammonin III–VI, resin glycosides of Convolvulus scammonia. Phytochemistry 30:957–963

    Article  CAS  Google Scholar 

  • Koiwai A, Matsuzaki T (1988) Hydroxy and normal fatty acid distribution in stigmas of Nicotiana and other plants. Phytochemistry 27:2827–2830

    Article  CAS  Google Scholar 

  • Koiwai A, Suzuki F, Matsuzaki T, Kawashima N (1983) The fatty acid composition of seeds and leaves of Nicotiana species. Phytochemistry 22:1409–1412

    Article  CAS  Google Scholar 

  • Kosteletzky VF (1834) Allgemeine medizinisch-pharmazeutische Flora, vol 3. Verlag von Heinrich Hoff, Mannheim, Germany, pp 854–868

    Google Scholar 

  • Kromer N (1901) Ueber die Bildung von α-Methyl-β-Oxybuttersäure CH3CH(OH) CH(CH3) COOH bei der Einwirkung von Barythydrat auf Jalapin. Arch Pharm 239:373–384

    Article  CAS  Google Scholar 

  • Kupchan SM, Davies AP, Barbouts SJ, Schnoes HK, Burlingame AL (1969) Solapalmitine and solapalmitenine, two novel alkaloid tumor inhibitors from Solanum tripartitum. J Org Chem 34:3888–3893

    Article  PubMed  CAS  Google Scholar 

  • Lawson EN, Jamie JF, Kitching W (1992) Absolute stereochemistry of exogonic acid. J Org Chem 57:353–358

    Article  CAS  Google Scholar 

  • Legler G (1964) Die Bestandteile des giftigen Glykosidharzes aus Ipomoea fistulosa MART. et CHOIS. Phytochemistry 4:29–41

    Article  Google Scholar 

  • Lemieux RU (1951) Biochemistry of the Ustilaginales. III. The degradation products and proof of the chemical heterogeneity of ustilagic acid. Can J Chem 29:415–425

    Article  PubMed  CAS  Google Scholar 

  • León I, Enriquez RG, Gnecco D, Villarreal ML, Cortés, DA, Reynolds WF, Yu M (2004) Isolation and characterization of five new tetrasaccharide glycosides from the roots of Ipomoea stans and their cytotoxic activity. J Nat Prod 67:1552–1556

    Article  PubMed  CAS  Google Scholar 

  • León I, Enriquez RG, Nieto DA, Alonso D, Reynolds WF, Aranda E, Villa J (2005) Pentasaccharide glycosides from the roots of Ipomoea murucoides. J Nat Prod 68:1141–1146

    Article  PubMed  CAS  Google Scholar 

  • León I, Mirón G, Alonso D (2006) Characterization of pentasaccharide glycosides from the roots of Ipomoea arborescens. J Nat Prod 69:896–902

    Article  PubMed  CAS  Google Scholar 

  • MacLeod JK, Ward A, Oelrichs PB (1997) Structural investigation of resin glycosides from Ipomoea lonchophylla. J Nat Prod 60:467–471

    Article  PubMed  CAS  Google Scholar 

  • Maestri DM, Guzman CA (1991) Characteristics of seed oils of Nierembergia aristata and Bouchetia anomala (Solanaceae). Anal Asoc Quim Argentina 79:251–257

    CAS  Google Scholar 

  • Maestri DM, Zygadlo JA, Gunzman CA (1992) General composition of seed oils from Lycieae, Jaboroseae and Nicandreae species (Solanaceae). Anal Asoc Quim Argentina 80:439–443

    CAS  Google Scholar 

  • Maestri DM, Lamarque AL, Zygadlo JA, Grosso NR, Bernardello LM, Galetto L, Guzman CA (1994) Seed oil and protein in Lycieae (Solanaceae). Anal Asoc Quim Argentina 82:237–241

    CAS  Google Scholar 

  • Maldonado E, Torres FR, Martínez M, Pérez-Castorena AL (2006) Sucrose esters from the fruits of Physalis nicandroides var. attenuata. J Nat Prod 69:1511–1513

    Article  PubMed  CAS  Google Scholar 

  • Maneerat C, Hayata Y, Kozuka H, Sakamoto K, Osajima Y (2002) Application of the Porak Q column extraction method for tomato flavour volatile analysis. J Agric Food Chem 50:3401–3404

    Article  PubMed  CAS  Google Scholar 

  • Mannich C, Schumann P (1938) Über Jalapenharz und dessen Hauptbestandteil, das Convolvulin. Arch Pharm 276:211–226

    Article  CAS  Google Scholar 

  • Mao L, Story RN, Hammond AM, Peterson JK, Labonte DR (2001) Effect of nitrogen on restistance of sweet potato to sweetpotato weevil (Coleoptera: Curculionidae) and on storage root chemistry. J Econ Entomol 94:1285–1291

    Article  PubMed  CAS  Google Scholar 

  • Mao L, Jett L, Story RN, Hammond AM, Peterson JK, Labonte DR (2004) Influence of drought stress on sweetpotato resistance to sweetpotato weevil, Cyclas formicarius (Coleoptera: Curculionidae), and storage root chemistry. Florida Entomol 87:261–267

    Article  CAS  Google Scholar 

  • Matsuzaki T, Koiwai A, Kawashima N (1983) Isolation of tetra-, penta-, hexa- and heptaacyl glycerides from stigmas of Nicotiana tabacum. Agric Biol Chem 47:77–82

    CAS  Google Scholar 

  • Matsuzaki T, Koseki K, Kawashima N (1988) Germination and growth inhibition of surface lipids from Nicotiana species and identification of sucrose esters. Agric Biol Chem 52:1889–1897

    CAS  Google Scholar 

  • Matsuzaki T, Shinozaki Y, Suhara S, Tobita T, Shigematsu H, Koiwai A (1991) Leaf surface glycolipids from Nicotiana acuminata and Nicotiana pauciflora. Agric Biol Chem 55:1417–1419

    CAS  Google Scholar 

  • Mayer W (1852) Ueber das Jalappaharz. Liebigs Ann Chem 83:121–153

    Google Scholar 

  • Mayer W (1854) Vorläufige Notiz über zwei homologe Glucoside. Liebigs Ann Chem 92:125–129

    Google Scholar 

  • Mayer W (1855) Ueber die sogenannten Jalappaharze. Liebigs Ann Chem 95:129–176

    Google Scholar 

  • Meeuse ADJ, Welman WG (2000) Convolvulaceae. In: Germishuizen G (ed) Flora of Southern Africa, vol 28, part 1. National Botanical Institute, Pretoria, South Africa, pp 116–117

    Google Scholar 

  • Miersch O, Knöfel HD, Schmidt J, Kramell R, Parthier B (1998) A jasmonic acid conjugate, N-[(−)-jasmonoyl]-tyramine, from Petunia pollen. Phytochemistry 47:327–329

    Article  CAS  Google Scholar 

  • Mirón-López G, Herrera-Ruiz M, Estrada-Soto S, Aguirre-Crespo F, Vázquez-Navarrete L, León-Rivera I (2007) Resin glycosides from the roots of Ipomoea tyrianthina and their biological acitivity. J Nat Prod 70:557–562

    Article  PubMed  CAS  Google Scholar 

  • Misra AL, Tewari JD (1952) Chemical examination of seeds of Ipomoea muricata. III. J Indian Chem Soc 29:430–433

    CAS  Google Scholar 

  • Misra AL, Tewari JD (1953) Chemical examination of Ipomoea muricata seeds. IV. J Indian Chem Soc 30:391–397

    CAS  Google Scholar 

  • Miyahara K, DU XM, Watanabe M, Sugimura C, Yahara S, Nohara T (1996) Resin glycosides. XXIII. Two novel acylated trisaccharides related to resin glycoside from the seeds of Cuscuta chinensis. Chem Pharm Bull 44:481–485

    CAS  Google Scholar 

  • Molyneux RJ, Nash RJ, Asano N (1996) The chemistry and biological activity of calystegines and related nortropane alkaloids. In: Pelletier SW (ed) Alkaloids: chemical and biological perspectives, vol 11. Pergamon/Elsevier Science, London, pp 303–343

    Chapter  Google Scholar 

  • Moser D, Klaiber I, Vogler B, Kraus W (1999) Molluscicidal and antibacterial compounds from Petunia hybrida. Pesticide Sci 55:336–339

    Article  CAS  Google Scholar 

  • Nair GG, Daniel M, Sabnis SD (1986) Chemosystematics of Ipomoea Linn. and some related taxa. Curr Sci 55:961–965

    CAS  Google Scholar 

  • Nikolin A, Nikolin B, Janković M (1978) Ipopurpuroside, a new glycoside from Ipomoea purpurea. Phytochemistry 17:451–452

    Article  CAS  Google Scholar 

  • Noda N, Ono M, Miyahara K, Kawasaki T, Okabe M (1987) Resin glycosides. I. Isolation and structure elucidation of orizabin I, II, III and IV. Genuine resin glycosides from the root of Ipomoea orizabensis. Tetrahedron 43:3889–3902

    Article  CAS  Google Scholar 

  • Noda N, Kobayashi H, Miyahara K, Kawasaki T (1988a) Resin glycosides. II Identification and characterization of the component organic and glycosidic acids of the crude resin glucoside from the seeds of Ipomoea muricata. Chem Pharm Bull 36:627–633

    CAS  Google Scholar 

  • Noda N, Kobayashi H, Miyahara K, Kawasaki T (1988b) Resin glycosides. III. Isolation and structural study of the genuine resin glycosides, muricatins I–VI, from the seeds of Ipomoea muricata. Chem Pharm Bull 36:920–929

    CAS  Google Scholar 

  • Noda N, Nishi M, Miyahara K, Kawasaki T (1988c) Resin glycosides. IV. Two new resin glycosides, muricatins VII and VIII, from the seeds of Ipomoea muricata. Chem Pharm Bull 36:1707–1713

    CAS  Google Scholar 

  • Noda N, Kogetsu H, Kawasaki T, Miyahara K (1990) Resin glycosides. VI. Scammonins I and II, the resin glycosides of Radix Scammoniae from Convolvulus scammonia. Phytochemistry 29:3565–3569

    Article  PubMed  CAS  Google Scholar 

  • Noda N, Kogetsu H, Kawasaki T, Miyahara K (1992a) Resin glycosides. XII. Scammonins VII and VIII, two resin glycosides from Convolvulus scammonia. Phytochemistry 31:2761–2766

    Article  PubMed  CAS  Google Scholar 

  • Noda N, Yoda S, Kawasaki T, Miyahara K (1992b) Resin glycosides. XV. Simonins I–V, ether-soluble resin glycosides (jalapins) from the roots of Ipomoea batatas (cv Simon). Chem Pharm Bull 40:3163–3168

    PubMed  CAS  Google Scholar 

  • Noda N, Takahashi N, Kawasaki T, Miyahara K, Yang CR (1994a) Stoloniferins I–VII, resin glycosides from Ipomoea stolonifera. Phytochemistry 36:365–371

    Article  PubMed  CAS  Google Scholar 

  • Noda N, Tsuji K, Miyahara K, Yang CR (1994b) Resin glycosides. XXI. Tuguajalapins I–X, the resin glycosides having long-chain fatty acid groups from the root of Merremia hungaiensis. Chem Pharm Bull 42:2011–2016

    PubMed  CAS  Google Scholar 

  • Noda K, Tsuji K, Kawasaki T, Miyahara K, Hanazono H, Yang CR (1995) Resin glycosides. XXII. A novel resin glycoside, merremin (tuguajalapin X dimer), from Merremia hungaiensis. Chem Pharm Bull 43:1061–1063

    PubMed  CAS  Google Scholar 

  • Noda N, Takahashi N, Miyahara K, Yang CR (1998) Stoloniferins VIII–XII, resin glycosides from Ipomoea stolonifera. Phytochemistry 48:837–841

    Article  PubMed  CAS  Google Scholar 

  • Okabe H, Kawasaki T (1972) Studies on resin glycosides. III. Complete structures of pharbitic acids C and D. Chem Pharm Bull 20:514–520

    CAS  Google Scholar 

  • Okabe H, Koshito N, Tanaka K, Kawasaki T (1971) Studies on resin glycosides. II. Unhomogeneity of “pharbitic acid” and isolation and partial structures of pharbitic acids C and D, the major constituents of “pharbitic acid”. Chem Pharm Bull 19:2394–2403

    CAS  Google Scholar 

  • Ono M, Kubo K, Miyahara K, Kawasaki T (1989a) Operculin I and II, new ether-soluble resin glycosides (“jalapin”) with fatty acid ester groups from Rhizoma Jalapae Brasiliensis (roots of Ipomoea operculata). Chem Pharm Bull. 37:241–244

    CAS  Google Scholar 

  • Ono M, Kawasaki T, Miyahara K (1989b) Resin glycosides. V. Identification and characterization of the component organic and glycosidic acids of the ether-soluble crude resin glycosides (“jalapin”) from Rhizoma Jalapae Brasiliensis (roots of Ipomoea operculata). Chem Pharm Bull 37: 3209–3213

    CAS  Google Scholar 

  • Ono M, Noda N, Kawasaki T, Miyahara K (1990a) Resin glycosides. VII. Reinvestigation of the component organic and glycosidic acids of pharbitin, the crude ether-insoluble resin glycoside (“convolvulin”) of Pharbitidis semen (seeds of Pharbitis nil). Chem Pharm Bull 38:1892–1897

    CAS  Google Scholar 

  • Ono M, Fukunaga T, Kawasaki T, Miyahara K (1990b) Resin glycosides. VIII. Four new glycosidic acids, operculinic acids D, E, F, and G, of the ether-soluble crude resin glycosides (“jalapin”) from Rhizoma Jalapae Brasiliensis (roots of Ipomoea operculata). Chem Pharm Bull 38:2650–2655

    CAS  Google Scholar 

  • Ono M, Nishi M, Kawasaki T, Miyahara K (1990c) Resin glycosides. IX. Operculins I, II, V, VII and VIII, new ether-soluble resin glycosides of Rhizoma Jalapae Brasiliensis (the roots of Ipomoea operculata). Chem Pharm Bull 38:2986–2991

    CAS  Google Scholar 

  • Ono M, Kawasaki T, Miyahara K (1991) Resin glycosides. XI. Operculins III, IV, IX, X, XVI, XVII and XVIII, new ether-soluble resin glycosides of Rhizoma Jalapae Brasiliensis (root of Ipomoea operculata). Chem Pharm Bull 39:2534–2539

    CAS  Google Scholar 

  • Ono M, Fujimoto K, Kawata M, Fukunaga T, Kawasaki T, Miyahara K (1992a) Resin glycosides. XIII. Operculins VI, XI, XII, XIII, XIV and XV, the ether-soluble resin glycosides (“jalapin”) from Rhizoma Jalapae Brasiliensis (roots of Ipomoea operculata). Chem Pharm Bull 40:1400–1403

    PubMed  CAS  Google Scholar 

  • Ono M, Kuwabata K, Kawasaki T, Miyahara K (1992b) Resin glycosides. XIV. Quamoclins I–IV, new ether-soluble resin glycosides (jalapin) from seeds of Quamoclit pennata. Chem Pharm Bull 40:2674–2680

    CAS  Google Scholar 

  • Ono M, Ueguchi T, Murata H, Kawasaki T, Miyahara K (1992c) Resin glycosides. XVI. Marubajalapins I–VII, new ether-soluble resin glycosides from Pharbitis purpurea. Chem Pharm Bull 40:3169–3173

    CAS  Google Scholar 

  • Ono M, Ueguchi T, Kawasaki T, Miyahara K (1992d) Resin glycosides. XVII. Marubajalapins VIII–XI, jalapins from the aerial part of Pharbitis purpurea. Yakugaku Zasshi 112:866–872

    CAS  Google Scholar 

  • Ono M, Yamada F, Noda N, Kawasaki T, Miyahara K (1993a) Resin glycosides. XVIII. Determination by Mosher’s method of the absolute configurations of mono- and dihydroxy fatty acids originated from resin glycosides. Chem Pharm Bull 41:1023–1026

    CAS  Google Scholar 

  • Ono M, Nakagawa K, Kawasaki T, Miyahara K (1993b) Resin glycosides. XIX. Woodrosins I and II, ether-insoluble resin glycosides from the stems of Ipomoea tuberosa. Chem Pharm Bull 41:1925–1932

    PubMed  CAS  Google Scholar 

  • Ono M, Honda F (née Yamada), Karahashi A, Kawasaki T, Miyahara K (1997) Resin glycosides. XXV. Multifidins I and II, new jalapins, from the seed of Quamoclit × multifida. Chem Pharm Bull 45:1955–1960

    PubMed  CAS  Google Scholar 

  • Osol A, Farrar GF (eds) (1947) United States Dispensatory, 24th edn. JB Lippincott Company

    Google Scholar 

  • Osol A, Robertson P, Altschule MD (eds) (1967) United States Dispensatory, 26th edn. JB Lippincott Company

    Google Scholar 

  • Ovenden SPB, Yu J, Bernays J, Wan SS, Christophidis LJ, Sberna G, Tait RM, Wildman HG, Lebeller D, Lowther J, Walsh NG, Meurer-Grimes BM (2005) Physaloside A, an acylated sucrose ester from Physalis viscosa. J Nat Prod 68:282–284

    Article  PubMed  CAS  Google Scholar 

  • Paschold A, Halitschke R, Baldwin IT (2006) Using ‘mute’ plants to translate volatile signals. Plant J 45:275–291

    Article  PubMed  CAS  Google Scholar 

  • Pereda-Miranda R (1995) Bioactive natural products from traditionally used Mexican plants. In: Arnason JT, Mata R, Romeo JT (eds) Phytochemistry of medicinal plants. Plenum Press, New York, pp 83–112

    Google Scholar 

  • Pereda-Miranda R, Bah M (2003) Biodynamic constituents in the Mexican morning glories: Purgative remedies transcending boundaries. Curr Top Med Chem 3:111–131

    Article  PubMed  CAS  Google Scholar 

  • Pereda-Miranda R, Hernández-Carlos B (2002) HPLC isolation and structural elucidation of diastereomeric niloyl ester tetrasaccharides from Mexican scammony root. Tetrahedron 58:31453154

    Article  Google Scholar 

  • Pereda-Miranda R, Mata R, Anaya AL, Wickramaratne DBM, Pezzuto JM, Kinghorn AD (1993) Tricolorin A, major phytogrowth inhibitor from Ipomoea tricolor. J Nat Prod 56:571–582

    Article  PubMed  CAS  Google Scholar 

  • Pereda-Miranda R, Escalante-Sánchez E, Escobedo-Martínez C (2005) Characterization of lipophilic pentasaccharides from beach morning glory (Ipomoea pes-caprae). J Nat Prod 68:226–230; Erratum (2006): J Nat Prod 69:862

    Article  PubMed  CAS  Google Scholar 

  • Pereda-Miranda R, Kaatz GW, Gibbons S (2006a) Polyacylated oligosaccharides from medicinal Mexican morning glory species as antibacterials and inhibitors of multidrug resistance in Staphylococcus aureus. J Nat Prod 69:406–409

    Article  PubMed  CAS  Google Scholar 

  • Pereda-Miranda R, Fragoso-Serrano M, Escalante-Sánchez E, Hernández-Carlos B, Linares E, Bye R (2006b) Profiling of the resin glycoside content of Mexican jalap roots with purgative activity. J Nat Prod 69:1460–1466

    Article  PubMed  CAS  Google Scholar 

  • Pérez-Amador MC, García Argáez A, Amor Prats D, Murguía G, García Jiménez F, Márquez Alonso LC (1992) Estudio comparativo de asceites de semillas de seis especies de Ipomoea del grupo Arborescentes y de I. carnea JACQ. ΦYTON 53:71–75

    Google Scholar 

  • Peterson JK, Harrison HF Jr (1991) Isolation of substance from sweet potato (Ipomoea batatas) periderm tissue that inhibits seed germination. J Chem. Ecol 17:943–951

    Article  CAS  Google Scholar 

  • Peterson JK, Snook ME, Harrison HF Jr, Mason PF (1998) Isolation and structural identification of sucrose esters from corn spurrey (Spergula arvensis): inhibition of seed germination. J Chem Ecol 24:1803–1816

    Article  CAS  Google Scholar 

  • Pharmacopoea Germanica (1872) R v Decker’s Verlag, Berlin, Germany

    Google Scholar 

  • Pongprayoon U, Baeckström P, Jacobsson U, Lindström M, Bohlin L (1991) Compounds inhibiting prostaglandin synthesis isolated from Ipomoea pes-caprae. Planta Med 57:515–518

    Article  PubMed  CAS  Google Scholar 

  • Power FB, Rogerson H (1909) Chemical examination of Ipomoea purpurea Roth. Am J Pharmacy 80:251–286

    CAS  Google Scholar 

  • Power FB, Rogerson H (1910) Chemical examination of jalap. J Am Chem Soc 32:80

    Article  Google Scholar 

  • Power FB, Rogerson H (1912a) Chemical examination of the root of Ipomoea orizabensis. J Chem Soc, Transact 101:1–26

    Article  CAS  Google Scholar 

  • Power FB, Rogerson H (1912b) Chemical examination of the root of scammony root and of scammony. J Chem Soc, Proc 101:398–412

    CAS  Google Scholar 

  • Raguso RA, Levin RA, Foose SE, Holmerg MW, McDade LA (2003) Fragrance chemistry, nocturnal rhythms and pollination “syndromes” in Nicotiana. Phytochemistry 63:265–284

    Article  PubMed  CAS  Google Scholar 

  • Ramachandran R, Ali M (2003) Isolation and characterization of acyclic terpenic constituents from Cressa cretica aerial parts. J Med Arom Plant Sci 25:81–90

    CAS  Google Scholar 

  • Ramachandran R, Ali M, Mir SR (2004) Isolation and characterization of aliphatic constituents from Cressa cretica aerial parts. J Saudi Chem Soc 8:523–530

    Google Scholar 

  • Rencurosi A, Mitchell EP, Cioci G, Pérez S, Pereda-Miranda R, Imberty A (2004) Crystal structure of tricolorin A: molecular rationale for the biological properties of resin glycosides found in some Mexican herbal remedies. Angew Chem Int Ed 43:5918–5922

    Article  CAS  Google Scholar 

  • Reynolds WF, Yu M, Enriquez RG, Gonzalez H, León I, Magos G, Villareal ML (1995) Isolation and characterization of cytotoxic and antibacterial tetrasaccharide glycosides from Ipomoea stans. J Nat Prod 58:1730–1734

    Article  PubMed  CAS  Google Scholar 

  • Rivero-Cruz I, Acevedo L, Guerrero JA, Martinez S, Bye R, Pereda-Miranda R, Franzblau S, Timmermann BN, Mata R (2005) Antimycobacterial agents from selected Mexican medicinal plants. J Pharm Pharmacol 57:1117–1126

    Article  PubMed  CAS  Google Scholar 

  • Sahai M, Manickam M, Gupta M, Srivastava A, Ray AB (1999) Characterisation of a cerebroside isolated from the leaves of Datura metel. J Indian Chem Soc 76:95–97

    CAS  Google Scholar 

  • Samuelson C (1884) Chem Ztg 1543; fide Shellard (1961a)

    Google Scholar 

  • Sarin JPS, Garg HS, Khanna NM, Dhar MM (1973) Ipolearoside: a new glycoside from Ipomoea leari with anti-cancer activity. Phytochemistry 12:2461–2468

    Article  CAS  Google Scholar 

  • Saxena SC, Sumithra L (1985) Laboratory evaluation of leaf extract of a new plant to suppress the population of malaria vector Anopheles stephensii LISTON (Diptera: Culicidae). Curr Sci 54:201–202

    Google Scholar 

  • Severson RF, Arrendale RF, Chortyk OT, Green CR, Thome FA, Stewart JL, Johnson AW (1985) Isolation and characterization of the sucrose esters of the cuticular waxes of green tobacco leaf. J Agric Food Chem 33:870–875

    Article  CAS  Google Scholar 

  • Severson RF, Jackson DM, Johnson AW, Sisson VA, Stephenson MG (1991) Ovipositional behaviour of tobacco budworm and tobacco hornworm. Effects of cuticular components from Nicotiana species. ACS Symposium Ser vol. 449, American Chemical Society, Washington, DC, pp 264–277

    Google Scholar 

  • Severson RF, Eckel RVW, Jackson DM, Sisson VA, Stephenson MG (1994) Aphicidal activity of cuticular components from Nicotiana tabacum. ACS Symposium Ser vol. 551, American Chemical Society, Washington/DC, pp 172–179

    Google Scholar 

  • Shellard EJ (1961a) The chemistry of some convolvulaceous resins. Part I. Vera Cruz Jalap. Planta Med 9:102–116

    Article  CAS  Google Scholar 

  • Shellard EJ (1961b) The chemistry of some convolvulaceous resins. Part 2. Brazilian Jalap. Planta Med 9:141–145

    Article  CAS  Google Scholar 

  • Shellard EJ (1961c) The chemistry of some convolvulaceous resins. Part III. Tampico, Ipomoea and Scammonia resins. Planta Med 9:146–152

    Article  CAS  Google Scholar 

  • Shibuya H, Kawashima K, Baek NI, Narita N, Yoshikawa M, Kitagawa I (1989) Synthesis of (11S)-(+)- and (11R)-(−)-jalapinolic acids. A revision of chemical structures of merremosides B and D. Chem Pharm Bull 37:260–262

    CAS  Google Scholar 

  • Šimko I, Omer EA, Ewing EE, McMurry S, Koch JL, Davies PJ (1996) Tuberonic (12-OH-jasmonic) acid glucoside and its methyl ester in potato. Phytochemistry 43:727–730

    Article  Google Scholar 

  • Singh AP, Singh AK, Begum AS, Sahai M (2003) Two acyl sucroses from Petunia nyctaginiflora. Phytochemistry 63:485–489

    PubMed  Google Scholar 

  • Singh S, Stacey BE (1973) A new β-D-quinovoside from commercial Ipomoea purga. Phytochemistry 12:1701–1705

    Article  CAS  Google Scholar 

  • Smith CR Jr, Niece LH, Zobel HF, Wolff IA (1964) Glycosidic constituents of Ipomoea parasitica seed. Phytochemistry 3:289–299

    Article  CAS  Google Scholar 

  • Son KC, Severson RF, Pair SD, Kays SJ (1994) Comparison of the sucrose ester fatty acid components in flowers and flower buds of three Petunia × hybrida Hort. cultivars. Han’guk Wonye Hakhoechi 35:617–622

    CAS  Google Scholar 

  • Spirgatis H (1858) N R P 7:9; fide Shellard (1961c)

    Google Scholar 

  • Spirgatis H (1860) Ueber die Constitution des Scammoniumharzes. Liebigs Ann Chem 116:289–323

    Google Scholar 

  • Spirgatis H (1870) N R P 19:452; fide Shellard (1961c)

    Google Scholar 

  • Srivastava R, Sachdev K, Madhusudanan KP, Kulshreshtha DK (1991) Structure of pescaproside E, a fatty acid glycoside from Ipomoea pescaprae. Carbohydr Res 212:169–176

    Article  PubMed  CAS  Google Scholar 

  • Steffens JC, Walters DS (1991) Biochemical aspects of glandular trichome-mediated insect resistance in the Solanaceae. ACS Symposium Ser vol. 449, American Chemical Society, Washington, DC, pp 136–149

    Google Scholar 

  • Su BN, Misico R, Park EJ, Santarsiero BD, Mesecar AD, Fong HHS, Pezzuto JM, Kinghorn AD (2002) Isolation and characterization of bioactive principles of the leaves and stems of Physalis philadelphica. Tetrahedron 58:3453–3466

    Article  CAS  Google Scholar 

  • Tewari JP, Dutta KC, Mishra SS (1964) Phytochemical and pharmacological investigations of Ipomoea carnea (leaves). Labdev No 2:220–222

    Google Scholar 

  • Umehara K, Nemoto K, Ohkubo T, Miyase T, Degawa M, Noguchi H (2004) Isolation of a new 15-membered macrocyclic glycolipid lactone, cuscutic resinoside A from the seeds of Cuscuta chinensis: A stimulator of breast cancer cell proliferation. Planta Med 70:299–304

    Article  PubMed  CAS  Google Scholar 

  • Valette G (1937a) Hydrotropic action of Convolvulaceae resins on lecithin. Compt Rend Soc Biol 125:405–407

    CAS  Google Scholar 

  • Valette G (1937b) Hemolytic power of Convolvulaceae resins and their products of hydrolysis. Compt Rend Soc Biol 125:407–409

    CAS  Google Scholar 

  • Valette G, Liber A (1938) Bactericidal power of Convolvulaceae resin. Compt Rend Soc Biol 128:362–363

    CAS  Google Scholar 

  • van Ooststroom SJ, Hoogland RD (1953) Convolvulaceae. In: van Steenis CGGJ (ed) Flora Malesiana, ser I, vol 44, Noordhoff-Kolff, Djakarta/Indonesia, pp 389–512

    Google Scholar 

  • Villatoro-Vera RA, Bah M, Lorence A, Pereda-Miranda R (2004) Convolvulaceous resin glycosides induce non-selective pore formation in cell membranes. International Congress on Natural Products Research, Phoenix, AZ, USA, Book of Abstracts p 332, P369

    Google Scholar 

  • Votoček E (1901) Rhodeose, eine Methylpentose des Convolvulins. Z. Zuckerind Böhmens 25:297–305

    Google Scholar 

  • Votoček E (1910) Über die Glykosidsäuren des Convolvulins und die Zusammensetzung der rohen Isorhodeose. Ber 43:476–482

    Google Scholar 

  • Votoček E, Kastner J (1907) Ein neues Rhamnosid aus Ipomoea turpethum. Z Zuckerind Böhmens 31:307–316

    Google Scholar 

  • Votoček E, Prelog V (1929) Sur l’acide 3, 12-dioxypalmitique, composant de l’acide rhamnoconvolvulique. Coll Trav Chim Tchécoslovaq 1:55–64

    Google Scholar 

  • Votoček E, Vondraček R (1903) Über die Zucker des Jalapins und anderer vegetabilischer Glykoside. Z Zuckerind Böhmens 27:257–271, 333–340

    Google Scholar 

  • Vyvyan JR (2002) Allelochemicals as leads for new herbicides and agrochemicals. Tetrahedron 58:1631–1646

    Article  CAS  Google Scholar 

  • Wagner H, Kazmaier P (1977) Struktur der Operculinsäure aus dem Harz von Ipomoea operculata. Phytochemistry 16:711–714

    Article  CAS  Google Scholar 

  • Wagner H, Schwarting G (1977) Struktur der Microphyllinsäure aus dem Harz von Convolvulus microphyllus. Phytochemistry 16:715–717

    Article  CAS  Google Scholar 

  • Wagner H, Wenzel G, Chari VM (1978) The turpethinic acids of Ipomoea turpethum L. Planta Med 33:144–151

    Article  CAS  Google Scholar 

  • Wagner H, Schwarting G, Varljen J, Bauer R, Hamdard ME, El-Faer MZ, Beal J (1983) Die chemische Zusammensetzung der Convolvulaceen-Harze. IV. Die Glykosidsäuren von Ipomoea quamoclit, I. lacunosa, I. pandurata und Convolvulus al-sirensis. Planta Med 49:154–157

    Article  PubMed  CAS  Google Scholar 

  • Walker D, Bird A, Flora T, O’Sullivan B (1992) Some effects of feeding Tribulus terrestris, Ipomoea lonchophylla, and the seed of Abelmoschus ficulneus on fetal development and the outcome of pregnancy in sheep. Reprod Fert Develop 4:135–144

    Article  CAS  Google Scholar 

  • Williams LO (1970) Jalap or Veracruz jalap and its allies. Econ Bot 24:399–401

    CAS  Google Scholar 

  • Yokoyama R, Wada K (1987) Pharbitin content in Pharbitis nil. Rep Fac Sci, Shizuoka Univ 21:77–88

    CAS  Google Scholar 

  • Zhu W, Yang X, He H, Hao X (2000) Phytoecdysones from Porana discifera. Yunnan Zhiwu Yanjiu 22:351–357

    CAS  Google Scholar 

Download references

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

(2008). Secondary Metabolites Derived from Fatty Acids and Carbohydrates. In: Solanaceae and Convolvulaceae: Secondary Metabolites. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-74541-9_8

Download citation

Publish with us

Policies and ethics