Skip to main content

The authorities of the scientific species names are only added in the text of Sect. 3.1-Sect. 3.5 if a species is not involved in Table 3.1 (Solanaceae) and Table 3.2 (Convolvulaceae), respectively, where the authorities of the corresponding other species may be found.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 269.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 349.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abraham TW, Leete E (1995) New intermediate in the biosynthesis of the tropane alkaloids in Datura innoxia. J Am Chem Soc 117:8100–8105

    Article  CAS  Google Scholar 

  • Achenbach H, Fietz W, Wörth J, Waibel R, Portecop J (1986) Constituents of tropical medicinal plants: IXX. GC/MS-investigations of the constituents of Piper amalago: 30 new amides of the piperine-type. Planta Med. 52:12–18

    Article  PubMed  CAS  Google Scholar 

  • Adesanya SA, Nia R, Fontaine C, Pais M (1994) Pyrazole alkaloids from Newbouldia laevis. Phytochemistry 35:1053–1055

    Article  CAS  Google Scholar 

  • Ahmad A, Leete E (1970) Biosynthesis of the tropine moiety of hyoscyamine from δ-N-methylornithine. Phytochemistry 9:2345–2347

    Article  CAS  Google Scholar 

  • Al-Said MS, Evans WC, Grout RJ (1986) Alkaloids of Erythroxylum macrocarpum and E. sideroxyloides. Phytochemistry 25:851–853

    Article  CAS  Google Scholar 

  • Andersen RA, Fleming PD, Burton HR, Hamilton-Kemp TR, Sutton TG (1989) Nʹ-Acyl and Nʹ-nitroso pyridine alkaloids in alkaloid lines of burley tobacco during growth and air-curing. J Agric Food Chem 37:44–50

    Article  CAS  Google Scholar 

  • Andersson C, Ahman A (2004) Calystegines – danger in potatoes? Vaar Foeda 56:24–27

    CAS  Google Scholar 

  • Aripova SF (1985) Convolamine N-oxide from Convolvulus krauseanus. Khim Prir Soedin 275

    Google Scholar 

  • Aripova SF, Abdilalimov O (1993) Convolacine – a new alkaloid from Convolvulus subhirsutus. Khim Prir Soedin:88–90

    Google Scholar 

  • Aripova SF, Yunusov SY (1979) Alkaloids of the epigeal part of Convolvulus krauseanus. Khim Prir Soedin:527–529

    Google Scholar 

  • Aripova SF, Yunusov SY (1986a) Structure of Convosine. Khim Prir Soedin:618–620

    Google Scholar 

  • Aripova SF, Yunusov SY (1986b) Convolvidine, a native alkaloid of Convolvulus subhirsutus. Khim Prir Soedin:657–658

    Google Scholar 

  • Aripova SF, Malikov VM, Yunusov SY (1972) Alkaloids of Convolvulus. Khim Prir Soedin:401–402

    Google Scholar 

  • Aripova SF, Malikov VM, Yunusov SY (1977) Convolidine – a new alkaloid from Convolvulus krauseanus. Khim Prir Soedin:290–291

    Google Scholar 

  • Aripova SF, Sharova EG, Abdullaev UA, Yunusov SY (1983) A new alkaloid from Convolvulus krauseanus. Khim Prir Soedin:749–751

    Google Scholar 

  • Armstrong DW, Wang X, Lee JT, Liu YS (1999) Enantiomeric composition of nornicotine, anatabine, and anabasine in tobacco. Chirality 11:82–84

    Article  CAS  Google Scholar 

  • Asano N, Tomioka E, Kizu H, Matsui K (1994a) Sugars with nitrogen in the ring isolated from the leaves of Morus bombycis. Carbohydr Res 253:235–245

    Article  PubMed  CAS  Google Scholar 

  • Asano N, Oseki K, Tomioka E, Kizu H, Matsui K (1994b) N-Containing sugars from Morus alba and their glycosidase inhibitory activities. Carbohydr Res 259:243–255

    Article  PubMed  CAS  Google Scholar 

  • Asano N, Kato A, Oseki K, Kizu H, Matsui K (1995) Calystegines of Physalis alkekengi var. francheti (Solanaceae) – structure determination and their glycosidase inhibitory activities. Eur J Biochem 229:369–376

    Article  PubMed  CAS  Google Scholar 

  • Asano N, Kato A, Yokoyama Y, Miyauchi M, Yamamoto M, Kizu H, Matsui K (1996a) Calystegine N1, a novel nortropane alkaloid with a bridgehead amino group from Hyoscyamus niger: structure determination and glycosidase inhibitory activities. Carbohydr Res 284:169–178

    Article  CAS  Google Scholar 

  • Asano N, Kato A, Kizu H, Matsui K, Watson AA, Nash RJ (1996b) Calystegine B4, a novel trehelase inhibitor from Scopolia japonica. Carbohydr Res 293:195–204

    Article  PubMed  CAS  Google Scholar 

  • Asano N, Kato A, Kizu H, Matsui K (1996c) 1β-Amino-2α,3β,5β-trihydroxycycloheptane from Physalis alkekengi var. francheti. Phytochemistry 42:719–721

    Article  CAS  Google Scholar 

  • Asano N, Kato A, Miyauchi M, Kizu H, Tomimori T, Matsui K, Nash RJ, Molyneux RJ (1997a) Specific α-galactosidase inhibitors, N-methylcalystegines – structure/activity relationships of calystegines from Lycium chinense. Eur J Biochem 248:296–303

    Article  PubMed  CAS  Google Scholar 

  • Asano N, Kato A, Matsui K, Watson AA, Nash RJ, Molyneux RJ, Hackett L, Topping J, Winchester B (1997b) The effects of calystegines isolated from edible fruits and vegetables on mammalian liver glycosidases. Glycobiology 7:1085–1088

    Article  PubMed  CAS  Google Scholar 

  • Asano N, Nash RJ, Molyneux RJ, Fleet GWJ, (2000) Sugar-mimic glycosidase inhibitors: natural occurrence, biological activity and properties for therapeutic application. Tetrahedron Asymm 11:1645–1680

    Article  CAS  Google Scholar 

  • Asano N, Yokoyama K, Sakurai M, Ikeda K, Kizu H, Kato A, Arisawa M, Höke D, Dräger B, Watson AA, Nash RJ (2001) Dihydroxynortropane alkaloids from calystegine-producing plants. Phytochemistry 57:721–726

    Article  PubMed  CAS  Google Scholar 

  • Atal CK, Culvenor CC, Sawhney RS, Smith LW (1969) Alkaloids of Crotalaria grahamiana. Grahamine, the 3ʹ-[(−)-2-methylbutyryl] ester of monocrotaline. Austral J Chem 22:1773–1777

    CAS  Google Scholar 

  • Austin DF (2004) Florida ethnobotany. CRC Press, Boca Raton (FL), USA

    Book  Google Scholar 

  • Austin DF, Eich E (2001) Synopsis of Stictocardia with another Madagascan species, S. mojangensis (Convolvulaceae) Willdenowia 31:79–85

    Google Scholar 

  • Austin DF, Staples GW (1980) Xenostegia, a new genus of Convolvulaceae. Brittonia 32:533–536

    Article  Google Scholar 

  • Bachmann P, Witte L., Wright A, Wray V (1997) Two new classes of tropane alkaloids: tropanol esters of 3-(1-carboxy-vinyloxy)-benzoic acid and nicotinic acid from plants of the genus Cochlearia (Brassicaceae). 45th Annual Congress of the Society for Medicinal Plant Research, Regensburg/Germany, Book of Abstracts, Abstracts of Posters:C03 (complete poster seen)

    Google Scholar 

  • Baker RR (1999) Smoke chemistry. In: Davis DL, Nielsen MT (eds) Tobacco – production, chemistry and technology. Blackwell Science, Oxford, UK, pp 398–439

    Google Scholar 

  • Balasubrahmanyam SN, Quin LD (1962) Pyrolytic degradation of nornicotine and myosmine. Tobacco International 6:133–136

    CAS  Google Scholar 

  • Baldwin IT (1988) Damage-induced alkaloids in tobacco: pot-bound plants are not inducible. J Chem Ecol 14:1113–1120

    Article  CAS  Google Scholar 

  • Baldwin IT (1989) Mechanism of damage-induced alkaloid production in wild tobacco. J Chem Ecol 15:1661–1680

    Article  CAS  Google Scholar 

  • Baldwin IT (1999) Inducible nicotine production in native Nicotiana as an example of adaptive phenotypic plasticity. J Chem Ecol 25:3–30

    Article  CAS  Google Scholar 

  • Baldwin IT (2001) An ecologically motivated analysis of plant-herbivore interactions in native tobacco (Update on Nicotiana attenuata). Plant Physiol 127:1449–1458

    Article  PubMed  CAS  Google Scholar 

  • Baralle FE, Gros EG (1969) Biosynthesis of cuscohygrine and hyoscyamine in Atropa belladonna from DL-α-N-methylornithine-methyl-3H and DL-δ-N-methylornithine-methyl-3H. J Chem Soc, Chem Commun 721

    Google Scholar 

  • Barbieri RL, York CM, Cherry ML, Ryan KJ (1987) The effects of nicotine, cotinine and anabasine on rat adrenal 11β-hydroxylase and 21-hydroxylase. J Steroid Biochem 28:25–28

    Article  PubMed  CAS  Google Scholar 

  • Barbieri RL, Friedman AJ, Osathanondh R (1989) Cotinine and nicotine inhibit human fetal adrenal 11β-hydroxylase. J Clin Endocrin Metabol 69:1221–1224

    Article  CAS  Google Scholar 

  • Barbosa P, Saunders JA, Kemper J, Trumbule R, Olechno J, Martinat P (1986) Plant allelochemicals and insect parasitoids. Effects of nicotine on Cotesia congregata SAY (Hymenoptera: Braconidae) and Hyposoter annulipes CRESSON (Hymenoptera: Ichneumonidae). J Chem Ecol 12:1319–1328

    Article  CAS  Google Scholar 

  • Barbosa P, Gross P, Kemper J (1991) Influence of plant allelochemicals on the tobacco hornworm and its parasitoid, Cotesia congregata. Ecology 72:1567–1575

    Article  CAS  Google Scholar 

  • Barger G, Martin WF, Mitchell W (1937) Minor alkaloids of Duboisia myoporoides. J Chem Soc 1820–1823

    Google Scholar 

  • Barger G, Martin WF, Mitchell W (1938) Minor alkaloids of Duboisia myoporoides. II. Poridine and isoporoidine. J Chem Soc 1685–1690

    Google Scholar 

  • Barral (1847) Empirical formula of nicotine. Ann Chim et Phys 20:345; fide Czapek (1925), p 277

    Google Scholar 

  • Bartholomeusz TA, Bhogal RK, Molinié R, Felpin FX, Mathé-Allainmat M, Meier AC, Dräger B, Lebreton J, Roscher A, Robins RJ, Mesnard F (2005) Nicotine demethylation in Nicotiana cell suspension cultures: Nʹ-formylnicotine is not involved. Phytochemistry 66:2432–2440

    Article  PubMed  CAS  Google Scholar 

  • Basey K, Woolley JG (1973a) Biosynthesis of the tigloyl esters in Datura. Role of 2-methylbutyric acid. Phytochemistry 12:2197–2201

    Article  CAS  Google Scholar 

  • Basey K, Woolley JG (1973b) Biosynthesis of the tigloyl esters in Datura. Cis-trans isomerism. Phytochemistry 12:2883–2886

    Article  CAS  Google Scholar 

  • Basey K, Woolley JG (1973c) Alkaloids of Physalis alkekengi. Phytochemistry 12:2557–2559

    Article  CAS  Google Scholar 

  • Basey K, Woolley JG (1975) Biosynthesis of ditigloyl esters of di- and trihydroxytropanes in Datura. Phytochemistry 14:2201–2203

    Article  CAS  Google Scholar 

  • Basey K, McGaw BA, Woolley JG (1992) Phygrine, an alkaloid from Physalis species. Phytochemistry 31:4173–4176

    Article  CAS  Google Scholar 

  • Batra PP, Gleason RM Jr, Louda JW (1973) Cyclization of lycopene in the biosynthesis of ß-carotene. Phytochemistry 12:1309–1313

    Article  CAS  Google Scholar 

  • Bekkouche K, Daali Y, Cherkaoui S, Veuthey JL, Christen P (2001) Calystegine distribution in some solanaceous species. Phytochemistry 58:455–462

    Article  PubMed  CAS  Google Scholar 

  • Bentz JA, Barbosa P (1992) Effects of dietary nicotine and partial starvation of tobacco hornworm, Manduca sexta, on the survival and development of the parasitoid Cotesia congregata. Entomol Exp Appl 65:241–245

    Article  CAS  Google Scholar 

  • Beresford PJ, Woolley JG (1974) 6β-(2-Methylbutanoyloxy) tropan-3α-ol, a new alkaloid from Datura ceratocaula. Structure and biosynthesis. Phytochemistry 13:2511–2513

    Article  CAS  Google Scholar 

  • Berkov S (2003) Alkaloids of Datura ceratocaula. Z Naturforsch 58c:455–458

    Google Scholar 

  • Berkov S, Zayed R (2004) Comparison of tropane alkaloid spectra between Datura inoxia grown in Egypt and Bulgaria. Z Naturforsch 59c:184–186

    Google Scholar 

  • Berkov S, Pavlov A, Kovatcheva P, Stanimirova P, Philipov S (2003) Alkaloid spectrum in diploid and tetraploid hairy root cultures of Datura stramonium. Z Naturforsch 58c:42–46

    Google Scholar 

  • Berkov S, Doncheva T, Philipov S, Alexandrov K (2005) Ontogenetic variation of the tropane alkaloids in Datura stramonium. Biochem Syst Ecol 33:1017–1029

    Article  CAS  Google Scholar 

  • Bernardini L (1931a) The recovery of nicotine from leaves and other scrap in the manufacture of tobacco. Industria Chimica (Rome) 6:395–402

    CAS  Google Scholar 

  • Bernardini L (1931b) The manufacture of nicotine sulphate. Industria Chimica (Rome) 6: 497–503

    Google Scholar 

  • Bhatt ID, Chang JI, Hiraoka N (2004) In vitro propagation and storage of Brugmansia versicolor LAGERHEIM. Plant Biotechnol (Tokyo, Japan) 21:237–241

    CAS  Google Scholar 

  • Bick IRC, Bremner JB, Gilllard JW, Winzenberg KN (1974) Alkaloids of Anthocercis tasmanica. Austral J Chem 27:2515–2518

    CAS  Google Scholar 

  • Blaim K (1962) Zur Frage des Vorkommens von Nikotin in Pflanzen. Flora 152:171–172

    CAS  Google Scholar 

  • Blair BW (1999) Insects and their management in tobacco production. In: Davis DL, Nielsen MT (eds) Tobacco – production, chemistry and technology. Blackwell Science, Oxford, pp 228–240

    Google Scholar 

  • Blum MS (1983) Detoxification, deactivation and utilisation of plant compounds by insects. In: Hedin PA (ed) Plant resistance to insects. Am Chem Soc, Washington DC, pp 265–278

    Chapter  Google Scholar 

  • Bodendorf K, Kummer H (1962) Über die Alkaloide von Latua venenosa. Pharm Zentralhalle 101:620–622

    CAS  Google Scholar 

  • Bolt AJN (1972) 1′-Hexanoylnornicotine and 1′-octanoylnornicotine from tobacco. Phytochemistry 11:2341–2343

    Article  CAS  Google Scholar 

  • Boswell HD, Dräger B, Eagles J, McClintock C, Parr A, Portsteffen A, Robins DJ, Robins RJ, Walton NJ, Wong C (1999) Metabolism of N-alkyldiamines and N-alkylnortropinones by transformed root cultures of Nicotiana and Brugmansia. Phytochemistry 52:855–869

    Article  CAS  Google Scholar 

  • Bottomley W, White DE (1951) The chemistry of western Australian plants. IV. Duboisia hopwoodii. Austral J Sci Res 4A:107–111

    CAS  Google Scholar 

  • Bottomley W, Nottle RA, White DE (1945) The alkaloids of Duboisia hopwoodii. Austral J Sci 8:18–19

    CAS  Google Scholar 

  • Bramer SL, Kallungal BA (2003) Clinical considerations in study designs that use cotitine as a biomarker. Biomarkers 8:187–203

    Article  PubMed  CAS  Google Scholar 

  • Brock A, Bieri S, Christen P, Dräger B (2005) Calystegines in wild and cultivated Erythroxylum species. Phytochemistry 66:1231–1240

    Article  PubMed  CAS  Google Scholar 

  • Brock A, Herzfeld T, Paschke R, Koch M, Dräger B (2006) Brassicaceae contain nortropane alkaloids. Phytochemistry 67:2050–2057

    Article  PubMed  CAS  Google Scholar 

  • Brossi A, Pei XF (1998) Biological activity of unnatural alkaloid enantiomers. In: Cordell GA (ed) The alkaloids – chemistry and biology, vol 50. Academic Press, San Diego CA, USA, pp 109–139

    Chapter  Google Scholar 

  • Bullion K, Ohnishi S, Osawa Y (1991) Competitive inhibition of human placental aromatase by N-n-octanoylnornicotine and other nornicotine derivatives. Endocrine Res 17:409–419

    Article  CAS  Google Scholar 

  • Burton HR, Bush LP, Hamilton JL (1983) Effect of curing in the chemical composition of burley tobacco. Recent Adv Tob Sci 9:61–153

    Google Scholar 

  • Burton HR, Andersen RA, Fleming PD, Walton LR (1988) Changes in chemical composition of burley tobacco during senescence and curing. 2. Acylated pyridine alkaloids. J Agric Food Chem 36:579–584

    Article  CAS  Google Scholar 

  • Bush LP, Fannin FF, Chelvarajan RL, Burton HR (1993) Biosynthesis and metabolism of nicotine and related alkaloids. In: Gorrod JW, Wahren J (eds) Nicotine and related alkaloids – absorption, distribution, metabolism and excretion. Chapman & Hall, London, pp 1–30

    Google Scholar 

  • Bush LP, Hempfling WP, Burton HR (1999). Biosynthesis of nicotine and related compounds. In: Gorrod JW, Jacob P III (eds) Analytical determination of nicotine and related compounds and their metabolites. Elsevier, Amsterdam, NL, pp 13–43

    Chapter  Google Scholar 

  • Cairo Valera G, De Budowski J, Delle Monache F, Marini-Bettolo GB (1977) A new psychoactive drug: Heisteria olivae (Olacaceae). Att Acad Naz Lincei, Classe Sci Fis Matem Nat Rendiconti 62:363–364

    CAS  Google Scholar 

  • Cannon JR, Joshi KR, Meehan GV, Williams JR (1969) Tropane alkaloids from three western Australian Anthocercis species. Austral J Chem 22:221–227

    Article  CAS  Google Scholar 

  • Carine MA, Russell SJ, Santos-Guerra A, Francisco-Ortega J (2004) Relationships of the Macaronesian and Mediterranean floras: molecular evidence for multiple colonizations into Macaronesia and back-colonization of the continent in Convolvulus (Convolvulaceae). Am J Bot 91:1070–1085

    Article  Google Scholar 

  • Carroll I, Lewin AH, Boja JW, Kuhar MJ (1992) Cocaine receptor: biochemical characterization and structure-activity relationships of cocaine analogues at the dopamine transporter. J Med Chem. 35:969–981

    Article  PubMed  CAS  Google Scholar 

  • Casanova H, Araque P, Ortiz C (2005) Nicotine carboxylate insecticide emulsions: effect of the fatty acid chain length. J Agric Food Chem 53:9949–9953

    Article  PubMed  CAS  Google Scholar 

  • Chan GW, Berry D, DeBrosse CW, Hemling ME, MacKenzie-LoCasto L, Offen PH, Westley JW (1993) Conioidines A and B, novel DNA-interacting pyrrolidines from Chamaesaracha conioides. J Nat Prod. 56:708–713

    Article  PubMed  CAS  Google Scholar 

  • Chandler JLR, Gholson RK (1972) Nicotinic acid decarboxylation in tobacco roots. Phytochemistry 11:239–242

    Article  CAS  Google Scholar 

  • Chari VM, Jordan M, Wagner H (1978) Structure elucidation and synthesis of naturally occurring acylglycosides – II. Structures of tiliroside, tribuloside, and ipomine. Planta Med 34:93–96

    Article  CAS  Google Scholar 

  • Chase MW, Knapp S, Cox AV, Clarkson JJ, Butsko Y, Joseph J, Savolainen V, Parokonny AS (2003) Molecular systematics, GISH and the origin of hybrid taxa in Nicotiana (Solanaceae). Ann Bot 92:107–127

    Article  PubMed  CAS  Google Scholar 

  • Christen P, Kapetanidis I (1987) Phytochemical study on the leaves of Lycium halimifolium MILLER. Part 1. Studies on alkaloids. Pharmac Acta Helv 62:154–157

    CAS  Google Scholar 

  • Christen P, Roberts MF, Phillipson JD, Evans WC (1990) Alkaloids of hairy root cultures of a Datura candida hybrid. Plant Cell Rep 9:101–104

    Article  CAS  Google Scholar 

  • Christen P, Roberts MF, Phillipson JD, Evans WC (1993) Alkaloids of Erythroxylum zambesiacum stem-bark. Phytochemistry 34:1147–1151

    Article  CAS  Google Scholar 

  • Christen P, Roberts MF, Phillipson JD, Evans WC (1995) Alkaloids of Erythroxylum monogynum root-bark. Phytochemistry 38:1053–1056

    Article  CAS  Google Scholar 

  • Clarkson JJ, Knapp S, Garcia VF, Olmstead RG, Leitch AR, Chase MW (2004). Phylogenetic relationships in Nicotiana (Solanaceae) inferred from multiple plastid DNA regions. Mol Phylogen Evol 33:75–90

    Article  CAS  Google Scholar 

  • Clement BA, Goff CM, Forbes TDA (1997) Toxic amines and alkaloids from Acacia berlandieri. Phytochemistry 46:249–254

    Article  CAS  Google Scholar 

  • Consuelo-Fonseca L, Salive GA (1972) Phytochemical study of Evolvulus sericeus var. holosericereus. Rev Colomb Cie Quim-Farm 2:27–50

    CAS  Google Scholar 

  • Coulson JF, Griffin WJ (1967) The alkaloids of Duboisia myoporoides. 1. Aerial parts. Planta Med 15:459–466

    Article  PubMed  CAS  Google Scholar 

  • Coulson JF, Griffin WJ (1968) The alkaloids of Duboisia myoporoides. 2. Roots. Planta Med 16:174–181

    Article  CAS  Google Scholar 

  • Crooks PA (1999) Chemical properties of nicotine and other tobacco-related compounds. In: Gorrod JW, Jacob P III (eds) Analytical determination of nicotine and related compounds and their metabolites. Elsevier, Amsterdam, pp 69–110

    Chapter  Google Scholar 

  • Cutler HG, Severson RF, Cole PD, Arrendale RF, Sisson VA (1986) Plant growth inhibitory and antimicrobial properties of hydroxyacylnornicotines from select Nicotiana species. Proceedings – 13th Meeting Plant Growth Regulation Society of America, pp 188–200

    Google Scholar 

  • Czapek F (1925) Biochemie der Pflanzen, vol 3. Gustav Fischer, Jena/Germany

    Google Scholar 

  • Czygan FC, Wessinger B, Warmuth K (1988) Cuscuta and its ability to take up and accumulate alkaloids of the host plant. Biochem Physiol Pflanz 183:495–501

    CAS  Google Scholar 

  • Dale HH (1914) The action of certain esters and ethers of choline and their relation to muscarine. J Pharmacol Exp Ther 6:147–190

    CAS  Google Scholar 

  • Dasgupta P, Kinkade R, Joshi B, DeCook C, Haura E, Chellappan S (2006) Nicotine inhibits apoptosis induced by chemotherapeutic drugs by up-regulating XIAP and surviving. PNAS 103:6332–6337

    Article  PubMed  CAS  Google Scholar 

  • Davis EL, Rich JR (1987) Nicotine content of tobacco roots and toxicity to Meloidogyne incognita. J Nematol 19:23–29

    PubMed  CAS  Google Scholar 

  • Dawidar AM, Winternitz F, Johns SR (1977) Structure of ipomine, a new alkaloid of Ipomoea muricata JACQ. Tetrahedron 33:1733–1734

    Article  CAS  Google Scholar 

  • Dawson RF (1941) The localization of the nicotine synthetic mechanism in the tobacco plant. Science 94:396–397

    Article  PubMed  CAS  Google Scholar 

  • Dawson RF (1945) On the biogenesis of nornicotine and anabasine. J Am Chem Soc 67:503–504

    Article  CAS  Google Scholar 

  • Dawson RF, Solt ML (1959) Estimated contributions of root and shoot to the nicotine content of the tobacco plant. Plant Physiol 34:656–661

    Article  PubMed  CAS  Google Scholar 

  • Dawson RF, Christman DR, d’Adamo A, Solt ML, Wolf AP (1960) The biosynthesis of nicotine from isotopically labelled nicotinic acids. J Am Chem Soc 82:2628–2633

    Article  CAS  Google Scholar 

  • De Balogh KKIM, Dimande AP, van der Lugt JJ, Molyneux RJ, Naudé TW, Welman WG (1998) Ipomoea carnea: the cause of a lysosomal storage disease in goats in Mozambique. In: Garland T, Barr AC (eds) Toxic plants and other natural toxicants. CAB International, Wallingford, UK, pp 428–434

    Google Scholar 

  • De Garcia LA, Rodriguez PH, Martinez M (1985) Alkaloid contents in some Colombian Brugmansia species. Rev Mex Cienc Farmac 16:11–13

    CAS  Google Scholar 

  • De la Fuente G, Reina M, Muñoz O, San Martin A, Girault JP (1988) Tropane alkaloids from Schizanthus pinnatus. Heterocycles 27:1887–1897

    Article  CAS  Google Scholar 

  • Deckers W, Maier J (1953) Two new alkaloids from Duboisia leichhardtii. Chem Ber 86:1423–1428

    CAS  Google Scholar 

  • Denton TT, Zhang X, Cashman JR (2004) Nicotine-related alkaloids and metabolites as inhibitors of human cytochrome P-450 2A6. Biochem Pharmacol 67:751–756

    Article  PubMed  CAS  Google Scholar 

  • Dinkel M, Bedner M (2001) Der Biorausch – ein neuer Trend. Notarzt 17:105–107

    Article  Google Scholar 

  • Djordjevic MV, Bush LP, Gay SL, Burton HR (1990) Accumulation and distribution of acylated nornicotine derivatives in flue-cured tobacco alkaloid isolines. J Agric Food Chem 38:347–350

    Article  CAS  Google Scholar 

  • Doerk-Schmitz K, Witte L, Alfermann AW (1994) Tropane alkaloid patterns in plants and hairy roots of Hyoscyamus albus. Phytochemistry 35:107–110

    Article  CAS  Google Scholar 

  • Domino EF (1999) Pharmacological significance of nicotine. In: Gorrod JW, Jacob P III (eds) Analytical determination of nicotine and related compounds and their metabolites. Elsevier, Amsterdam, pp 1–11

    Chapter  Google Scholar 

  • Doncheva T, Philipov S, Kostova N (2004) Alkaloids from Datura stramonium L. Dokl Bulgarsk Akad Nauk (Compt Rend Acad Bulg) 57:41–44

    CAS  Google Scholar 

  • Dorling PR, Colegate SM, Allen JG, Nickels R, Mitchell AA, Main DC, Madin B (2004) Calystegines isolated from Ipomoea spp. possibly associated with an ataxia syndrome in cattle in north Western Australia. In: Acamovic T, Stewart CS, Pennycott TW (eds) Poisonous plants and related toxins. CABI Publishing, Wallingford, UK, pp 140–145

    Chapter  Google Scholar 

  • Dräger B (1996) Glykosidasehemmstoffe – Biologische Aktivität und therapeutische Bedeutung. Dtsch Apoth Ztg 136:1199–1206

    Google Scholar 

  • Dräger B (2004) Chemistry and biology of calystegines. Nat Prod Rep 21:211–223

    Article  PubMed  CAS  Google Scholar 

  • Dräger B (2006) Tropinone reductases, enzymes at the branch point of tropane alkaloid metabolism. Phytochemistry 67:327–337

    Article  PubMed  CAS  Google Scholar 

  • Dräger B, Portsteffen A, Schaal A, McCabe PH, Peerless ACJ, Robins RJ (1992) Levels of tropinone-reductase activities influence the spectrum of tropane esters found in transformed root cultures of Datura stramonium L. Planta 188:581–586

    Article  Google Scholar 

  • Dräger B, Funck C, Höhler A, Mrachatz G, Nahrstedt A, Portsteffen A, Schaal A, Schmidt R (1994) Calystegines as a new group of tropane alkaloids in Solanaceae. Plant Cell, Tissue Organ Cult 38:235–240

    Article  Google Scholar 

  • Dräger B, van Almsick A, Mrachatz G (1995) Distribution of calystegines in several Solanaceae. Planta Med 61:577–579

    Article  PubMed  Google Scholar 

  • Ducrot PH, Lallemand JY (1990) Structure of the calystegines: new alkaloids of the nortropane family. Tetrahedron Lett 31:3879–3882

    Article  CAS  Google Scholar 

  • Eckenwalder JE (1986) Nomenclature of the Cardinal Climber (Convolvulaceae) reconsidered. Taxon 35:169–170

    Article  Google Scholar 

  • Ehrenfeld K (1999) Alkaloide in pflanzlichen Parasiten. Dtsch Apoth Ztg 139:4277–4278

    Google Scholar 

  • Ehrenstein M (1931) Tabakalkaloide. Arch Pharm 269:627–659

    Article  CAS  Google Scholar 

  • El-Dabbas SW, Evans WC (1982) Alkaloids of the genus Datura, section Brugmansia. X. Alkaloid content of Datura hybrids. Planta Med 44:184–185

    Article  PubMed  CAS  Google Scholar 

  • El-Imam YMA, Evans WC (1984) Tropane alkaloids of species of Anthocercis, Cyphanthera and Crenidium. Planta Med 50:86–87

    Article  PubMed  CAS  Google Scholar 

  • El-Imam YMA, Evans WC (1990) Alkaloids of a Datura candida cultivar, D. aurea and various hybrids. Fitoterapia 61:148–152

    CAS  Google Scholar 

  • El-Imam YMA, Evans WC, Plowman T (1985) Alkaloids of some South American Erythroxylum species. Phytochemistry 24:2285–2289

    Article  CAS  Google Scholar 

  • El-Imam YMA, Evans WC, Grout RJ, Ramsey KPA (1987) Alkaloids of Erythroxylum zambesiacum root-bark. Phytochemistry 26:2385–2389

    Article  Google Scholar 

  • El-Imam YMA, Evans WC, Grout RJ (1988) Alkaloids of Erythroxylum cuneatum, E. ecarnitum and E. australe. Phytochemistry 27:2181–2184

    Article  CAS  Google Scholar 

  • El-Olemy MM, Schwarting AE (1965) Simulated biosynthesis of anahygrine. Experientia 21:249

    Article  PubMed  CAS  Google Scholar 

  • El-Shazly A, Tei A, Witte L, El-Domiaty M, Wink M (1997) Tropane alkaloids of Hyoscyamus boveanus, H. desertorum, H. muticus, and H. albus from Egypt. Z Naturforsch 52c:729–739

    Google Scholar 

  • Endo T, Yamada Y (1985) Alkaloid production in cultured roots of three species of Duboisia. Phytochemistry 24:1233–1236

    Article  CAS  Google Scholar 

  • Engel R, Nahrstedt A, Hammerschmidt F (1995) Composition of the essential oils of Cedronella canariensis (L.) WEBB. et BERTH. ssp. canariensis and ssp. anisata f. glabra and f. pubescens. J Essent Oil Res 7:473–487

    CAS  Google Scholar 

  • Enzell CR, Wahlberg I, Aasen AJ (1977) Isoprenoids and alkaloids of tobacco. In: Herz W, Grisebach H, Kirby GW (eds) Progress in the chemistry of organic natural products. Springer, Wien, pp 44–79

    Google Scholar 

  • Evans WC (1979) Tropane alkaloids of the Solanaceae. In: Hawkes, Lester, Skelding (eds) The biology and taxonomy of the Solanaceae. Linn Soc Symp Ser, vol 7. Linnean Soc & Academic Press, London, pp 241–254

    Google Scholar 

  • Evans WC, Lampard JF (1972) Alkaloids of Datura suaveolens. Phytochemistry 11:3293–3298

    Article  CAS  Google Scholar 

  • Evans WC, Major VA (1968) Alkaloids of the genus Datura, section Brugmansia. V. Alkaloids of D. sanguinea and related esters of tropane-3α,6β,7β,-triol. J Chem Soc C (Organic) 2775–2778

    Google Scholar 

  • Evans WC, Ramsey KPA (1979) Alkaloids of Anthocercis frondosa. J Pharm Pharmacol 31, Suppl:9P

    PubMed  Google Scholar 

  • Evans WC, Ramsey KPA (1983) Alkaloids of the Solanaceae tribe Anthocercideae. Phytochemistry 22:2219–2225

    Article  CAS  Google Scholar 

  • Evans WC, Somanabandhu A (1974a) Alkaloids of Datura discolor. Phytochemistry 13: 304–305

    Article  CAS  Google Scholar 

  • Evans WC, Somanabandhu A (1974b) Cuscohygrine, a constituent of the roots of some British Convolvulaceae. Phytochemistry 13:519–520

    Article  CAS  Google Scholar 

  • Evans WC, Somanabandhu A (1977) Bases from roots of Solanum carolinense. Phytochemistry 16:1859–1860

    Article  CAS  Google Scholar 

  • Evans WC, Somanabandhu A (1980) Nitrogen-containing non-steroidal secondary metabolites of Solanum, Cyphomandra, Lycianthes and Margaranthus. Phytochemistry 19:2351–2356

    Article  CAS  Google Scholar 

  • Evans WC, Treagust PG (1973a) Distribution of alkaloids in Anthocercis littorea and A. viscosa. Phytochemistry 12:2505–2507

    Article  CAS  Google Scholar 

  • Evans WC, Treagust PG (1973b) Alkaloids of Datura pruinosa. Phytochem Rep 12:2077–2078

    Article  CAS  Google Scholar 

  • Evans WC, Wellendorf M (1958) l-3α,6β-Ditigloyloxytropane, a new alkaloid from Datura roots. J Chem Soc: 1991–1993

    Google Scholar 

  • Evans WC, Stevenson NA, Timoney RF (1969) Datura leichhardtii MUELL. ex BENTH. V. Alkaloidal constituents of the cross D. leichhardtii × D. inoxia. Planta Med 17:120–126

    Article  PubMed  CAS  Google Scholar 

  • Evans WC, Ghani A, Woolley VA (1972a) Alkaloids of Salpichroa origanifolia. Phytochemistry 11:469

    Article  CAS  Google Scholar 

  • Evans WC, Ghani A, Woolley VA (1972b) Alkaloids of Solandra species. Phytochemistry 11:470–472

    Article  CAS  Google Scholar 

  • Evans WC, Ghani A, Woolley VA (1972c) Distribution of littorine and other alkaloids in the roots of Datura species. Phytochemistry 11:2527–2529

    Article  CAS  Google Scholar 

  • Evans WC, Ghani A, Woolley VA (1972d) Alkaloids of Cyphomandra betacea SENDT. J Chem Soc Perkin 1:2017–2019

    Article  Google Scholar 

  • Fang YW, Zhao JJ, Bian ZL (1981) Determination of the structure of Erycibe obtusifolia BENTH.’s base II – a new medicine for glaucoma. Hua Hsuch Tung Pao:209–210

    Google Scholar 

  • Fikenscher LH (1960) The occurrence of nicotine in the genus Acacia. Pharm Weekbl 95:233–235

    PubMed  CAS  Google Scholar 

  • Fodor G, Csepreghy G (1959) Configuration of (−)-tropic acid and its naturally occurring esters. Tetrahedron Lett 7:16–18

    Article  Google Scholar 

  • Ford YY, Fox GG, Ratcliffe G, Robins RJ (1994) In vivo 15N NMR studies of secondary metabolism in transformed root cultures of Datura stramonium and Nicotiana tabacum. Phytochemistry 36:333–339

    Article  CAS  Google Scholar 

  • Freitas AVL, Trigo JR, Brown KS Jr, Witte L, Hartmann T, Barata LES (1996) Tropane and pyrrolizidine alkaloids in the ithomiines Placidula euryanassa and Miraleria cymothoe (Lepidoptera: Nymphalidae). Chemoecology 7:61–67

    Article  CAS  Google Scholar 

  • Friedman M, Roitman JN, Kozukue N (2003) Glycoalkaloid and calystegine contents of eight potato cultivars. J Agric Food Chem 51:2964–2973

    Article  PubMed  CAS  Google Scholar 

  • Friesen JB, Leete E (1990) Nicotine synthase – an enzyme from Nicotiana species which catalyses the formation of (S)-nicotine from nicotinic acid and 1-methyl-Δ1-pyrrolinium chloride. Tetrahedron Lett 31:6295–6298

    Article  CAS  Google Scholar 

  • Friesen JB, Burkhouse PC, Biesboer DD, Leete E (1992) Influence of alkaloid precursors on the alkaloid content of Nicotiana alata root cultures. Phytochemistry 31:3059–3063

    Article  CAS  Google Scholar 

  • Frölich C, Hartmann T, Ober D (2006) Tissue distribution and biosynthesis of 1, 2-unsaturated pyrrolizidine alkaloids in Phalaenopsis hybrides (Orchidaceae). Phytochemistry 67:1493–1502

    Article  PubMed  CAS  Google Scholar 

  • Frölich C, Ober D, Hartmann T (2007) Tissue distribution, core biosynthesis and diversification of pyrrolizidine alkaloids of the lycopsamine type in three Boraginaceae species. Phytochemistry 68:1026–1037

    Article  PubMed  CAS  Google Scholar 

  • Gadamer J (1901) Die Beziehungen des Hyoscyamins zu Atropin und des Scopolamins zu i-Scopolamin. Arch Pharm 239:294–340

    Article  CAS  Google Scholar 

  • Gambaro VE, Roses OE (1989) The presence of nicotine in extracts and decoctions from flowers of Brugmansia candida PERS. Act Farmac Bonaerense 8:17–22

    CAS  Google Scholar 

  • Gambaro V, Labbé C, Castillo M (1983) Angeloyl, tigloyl and senecioyloxytropane alkaloids from Schizanthus hookerii. Phytochemistry 22:1838–1839

    Article  CAS  Google Scholar 

  • Garcia VF, Olmstead RG (2003) Phylogenetics of tribe Anthocercideae (Solanaceae) based on ndhF and trnL/F sequence data. Syst Bot 28:609–615

    Google Scholar 

  • Geiger PL (1833) Ueber einige neue giftige organische Alkalien. Liebigs Ann. Chem 7:269–280

    Google Scholar 

  • Geiger PL, Hesse (1833a) Darstellung des Atropins. Liebigs Ann Chem 5:43–81

    Google Scholar 

  • Geiger PL, Hesse (1833b) Fortgesetzte Versuche ueber Atropin. Liebigs Ann Chem 6:44–65

    Google Scholar 

  • Gemeinholzer B, Wink M (2001) Solanaceae: occurrence of secondary compounds versus molecular phylogeny. In: van den Berg RG, Barendse GWM, van der Weerden GM, Mariani C (eds) Solanaceae V – advances in taxonomy and utilization. Nijmegen University Press, Nijmegen, The Netherlands, pp 165–178

    Google Scholar 

  • Gerrard AW (1880) Tropane alkaloids of Duboisia myoporoides. Pharm J 11:383

    Google Scholar 

  • Ghani A (1985) Cuscohygrine from some solanaceous plants. Ind J Pharm Sci 47:127–129

    CAS  Google Scholar 

  • Ghani A, Evans WC, Woolley VA (1972) Alkaloids of Hyoscyamus species. Bangladesh Pharmac J 1:12–14

    CAS  Google Scholar 

  • Giesel (1891) Pharm Ztg:419; fide Czapek (1925)

    Google Scholar 

  • Gill S, Raszeja W, Szynkiewicz G (1979) Occurrence of nicotine in some species of the genus Sedum. Farmacja Polska 35:151–153

    CAS  Google Scholar 

  • Goldmann A, Milat ML, Ducrot PH, Lallemand JY, Maille M, Lepingle A, Charpin I, Tepfer D (1990) Tropane derivatives from Calystegia sepium. Phytochemistry 29:2125–2127

    Article  CAS  Google Scholar 

  • Gonzalez MD, Pomilio AB, Gros EG (1981) Terpenoids and alkaloids from Nierembergia hippomanica. Anales de la Asociacion Quimica Argentina 69:297–299

    CAS  Google Scholar 

  • Goodspeed TH (1954) The genus Nicotiana. Chron Bot 18:1–536

    Google Scholar 

  • Göpel C, Marcus A (2000) Renaissance der “Hexenkräuter”: Der Missbrauch alkaloidhaltiger Pflanzen. Krankenhauspsychiatrie 11:94–98

    Article  Google Scholar 

  • Gorinova NI, Velcheva MP, Dyulgerov AS, Atanassov AI (1994) Tropane alkaloids in cell cultures of Physochlaina orientalis. Fitoterapia 65:452–456

    CAS  Google Scholar 

  • Gorrod JW (1993) The mammalian metabolism of nicotine: an overwiew. In: Gorrod JW, Wahren J (eds) Nicotine and related alkaloids – absorption, distribution, metabolism and excretion. Chapman & Hall, London, pp 31–44

    Google Scholar 

  • Gorrod JW, Schepers G (1999) Biotransformation of nicotine in mammalian systems. In: Gorrod JW, Jacob P III (eds) Analytical determination of nicotine and related compounds and their metabolites. Elsevier, Amsterdam, pp 45–67

    Chapter  Google Scholar 

  • Gourley JM, Heacock RA, McInnes AG, Nikolin B, Smith DG (1969) The structure of ipalbine, a new hexahydroindolizidine alkaloid, isolated from Ipomoea alba L. J Chem Soc Chem Comm 709–710

    Google Scholar 

  • Greger H (1984) Alkamides: structural relationships, distribution and biological activity. Planta Med 50:366–375

    Article  PubMed  CAS  Google Scholar 

  • Greger H, Zdero C, Bohlmann F (1987) Pyrrole amides from Achillea ageratifolia. Phytochemistry 26:2289–2291

    Article  CAS  Google Scholar 

  • Griffin WJ (1965) The alkaloids of Duboisia leichhardtii. Australasian J Pharm 46:128–131

    Google Scholar 

  • Griffin WJ, Lin GD (2000) Chemotaxonomy and geographical distribution of tropane alkaloids. Phytochemistry 53:623–637

    Article  PubMed  CAS  Google Scholar 

  • Griffiths RC, Watson AA, Kizu H, Asano N, Sharp HJ, Jones MG, Wormald MR, Fleet GWJ, Nash RJ (1996) The isolation from Nicandra physalodes and identification of the 3-O-ß-D-glucopyranoside of 1α,2ß,3α,6α,-tetrahydroxy-nor-tropane (calystegine B1). Tetrahedron Lett 37:3207–3208

    Article  CAS  Google Scholar 

  • Gritsanapan W, Griffin WJ (1991) Alkaloid variation within Duboisia myoporoides. Phytochemistry 30:2667–2669

    Article  CAS  Google Scholar 

  • Guenther ES (1943) Characteristics and uses of oil of olibanum. Am Perfum Ess Oil Rev 45:41–43

    Google Scholar 

  • Guthrie FE, Ringler RL, Bowery TG (1957) Chromatographic separation and identification of some alkaloid metabolites of nicotine in certain insects. J Econ Entomol 50:821–825

    CAS  Google Scholar 

  • Haekkinen ST, Rischer H, Laakso I, Maaheimo H, Seppaenen-Laakso T (2004) Anatalline and other methyl jasmonate-inducible nicotine alkaloids from Nicotiana tabacum cv. By-2 cell cultures. Planta Med 70:936–941

    Article  CAS  Google Scholar 

  • Halim AF, Collins RP, Berigari MS (1971) Alkaloids produced by Cestrum nocturnum and Cestrum diurnum. Planta Med 20:44–49

    Article  PubMed  CAS  Google Scholar 

  • Halitschke R, Gase K, Hui D, Schmidt DD, Baldwin IT (2003) Molecular interactions between the specialist herbivore Manduca sexta (Lepidoptera, Sphingidae) and its natural host Nicotiana attenuata. VI. Microarray analysis reveals that most herbivore-specific transcriptional changes are mediated by fatty acid-amino acid conjugates. Plant Physiol 131:1894–1902

    Article  PubMed  CAS  Google Scholar 

  • Hanounik SB, Osborne WW (1977) The relationships between density of Meloidogyne incognita and nicotine content of tobacco. Nematologica 23:147–152

    Article  CAS  Google Scholar 

  • Hansberry R, Norton LB (1940) Toxicities of optically active nicotines and nornicotines to Aphis rumicis. J Econ Entomol 33:734–735

    CAS  Google Scholar 

  • Hänsel R (2004) Nicotianaalkaloide. In: Hänsel R, Sticher O (eds) Pharmakognosie – Phytopharmazie, 7. Aufl. Springer, Heidelberg, pp 936–941

    Google Scholar 

  • Hänsel R, Keller K, Rimpler H, Schneider G (eds) (1992) Hagers Handbuch der Pharmazeutischen Praxis, Drogen A-Z, vol 4–6. Springer Verlag Berlin, Germany

    Google Scholar 

  • Hao DY, Yeoman MM (1996a) Mechanism of nicotine N-demethylation in tobacco cell suspension cultures. Phytochemistry 41:477–482

    Article  CAS  Google Scholar 

  • Hao DY, Yeoman MM (1996b) Nicotine N-demethylase in cell-free preparations from tobacco cell cultures. Phytochemistry Phytochemistry 42:325–329

    CAS  Google Scholar 

  • Haraguchi M, Gorniak SL, Ikeda K, Minami Y, Kato A, Watson AA, Nash RJ, Molyneux RJ, Asano N (2003) Alkaloidal components in the poisonous plant, Ipomoea carnea (Convolvulaceae). J Agric Food Chem 51:4995–5000

    Article  PubMed  CAS  Google Scholar 

  • Harborne JB (1993) Introduction to ecological biochemistry, 4th edn. Academic Press, Oxford, UK

    Google Scholar 

  • Harborne JB, Khan MB (1993) Variations in the alkaloidal and phenolic profiles in the genus Atropa (Solanaceae). Bot J Linn Soc 111:47–53

    Article  Google Scholar 

  • Harris CM, Schneider MJ, Ungemach FS, Hill JE, Harris TM (1998) Biosynthesis of the toxic alkaloids slaframine and swainsonine in Rhizoctonia leguminicola: Metabolism of 1-hydroxy-indolizidines. J Am Chem Soc 110:940–949

    Article  Google Scholar 

  • Harsh ML (1989) Tropane alkaloids from Lycium barbarum L., in vitro and in vivo. Curr Sci 58:817–818

    CAS  Google Scholar 

  • Hartmann R, San-Martin A, Muñoz O, Breitmaier E (1990) Grahamine, an unusual alkaloid from Schizanthus grahamii. Angew Chem 102:441–443 (Int Ed Engl 29:385–387)

    Article  CAS  Google Scholar 

  • Hartmann T (1999) Chemical ecology of pyrrolizidine alkaloids. Planta 207:483–495

    Article  CAS  Google Scholar 

  • Hartmann T (2004) Plant-derived secondary metabolites as defensive chemicals in herbivorous insects: a case study in chemical ecology. Planta 219:1–4

    Article  PubMed  CAS  Google Scholar 

  • Hartmann T, Ober D (2000) Biosynthesis and metabolism of pyrrolizidine alkaloids in plants and specialized insect herbivores. Topics Curr Chem 209:207–243

    Article  CAS  Google Scholar 

  • Hartmann T, Toppel G (1987) Senecionine N-oxide, the primary product of pyrrolizidine alkaloid biosynthesis in root culture of Senecio vulgaris. Phytochemistry 26:1639–1643

    Article  CAS  Google Scholar 

  • Hartmann T, Witte L (1995) Chemistry, biology and chemoecology of the pyrrolizidine alkaloids. In: Pelletier SW(ed) Alkaloids: chemical and biological perspectives, vol 9. Pergamon Press, Oxford, UK, pp 155–233

    Google Scholar 

  • Hartmann T, Witte L, Oprach F, Toppel G (1986) Reinvestigation of the alkaloid composition of Atropa belladonna plants, root cultures, and cell suspension. Planta Med 52:390–395

    Article  PubMed  CAS  Google Scholar 

  • Hartmann T, Ehmke A, Eilert U, v Borstel K, Theuring C (1989) Sites of synthesis, translocation and accumulation of pyrrolizidine alkaloid N-oxides in Senecio vulgaris. Planta 177:98–107

    Article  CAS  Google Scholar 

  • Hashimoto T, Yamada Y (1994) Alkaloid biogenesis: molecular aspects. Ann Rev Plant Mol Biol 45:257–285

    CAS  Google Scholar 

  • Hashimoto T, Hayashi A, Amano Y, Kohno J, Iwanari H, Usuda S, Yamada Y (1991) Hyoscyamine 6β-hydroxylase, an enzyme involved in tropane alkaloid biosynthesis, is localized at the pericycle of the root. J Biol Chem 266:4648–4653

    PubMed  CAS  Google Scholar 

  • Hashimoto T, Matsuda J, Yamada Y (1993) Two-step epoxidation of hyoscyamine to scopolamine is catalyzed by bifunctional hyoscyamine 6β-hydroxylase. FEBS Lett 329:35–39

    Article  PubMed  CAS  Google Scholar 

  • Hayslett RL, Tizabi Y (2003) Effects of donezipil on DOI-induced head twitch response in mice: implications for Tourette’s syndrome. Pharmacol Biochem Behav 76:409–415

    Article  PubMed  CAS  Google Scholar 

  • Hayslett RL, Tizabi Y (2005) Effects of donezipil, nicotine and haloperidol on the central serotonergic system in mice: implications for Tourette’s syndrome. Pharmacol Biochem Behav 81:879–886

    Article  PubMed  CAS  Google Scholar 

  • Hedges SH, Herbert RB (1979) An economical, biogenetically patterned synthesis of the alkaloid ipalbidine. J Chem Res Synopses 1

    Google Scholar 

  • Heeschen C, Jang JJ, Weis M, Pathak A, Kaji S, Hu RS, Tsao PS, Johnson FL, Cooke JP (2001) Nicotine stimulates angiogenesis and promotes tumor growth and atherosclerosis. Nature Med. 7:833–839

    Article  PubMed  CAS  Google Scholar 

  • Hegnauer R, Fikenscher LH (1959) Untersuchungen mit Erythroxylum coca LAM. Pharm Acta Helv 35:43–64

    Google Scholar 

  • Heltmann H (1979) Morphologische und phytochemische Untersuchungen an Sippen der Gattung Atropa. Herba Hungarica 18:101–110

    CAS  Google Scholar 

  • Henrici A (1996) Neuartige Sekundärstoffe unterschiedlichster Struktur aus tropischen Convolvulaceen. Dissertation, Fachbereich Pharmazie, Freie Universität Berlin, Germany

    Google Scholar 

  • Hess K (1919) Über die Alkaloide des Granatapfelbaums. VII. Das natürliche Vorkommen von Isopelletierin. Ber 52B:1005–1013

    CAS  Google Scholar 

  • Hess K, Fink H (1920) Über die Alkaloide der Hygrin-Reihe. III. Die Aufklärung der Konstitution des Cuskhygrins. Umwandlung von Cuskhygrin in Hygrin. Ber 53B:781–809

    CAS  Google Scholar 

  • Hesse O (1901a) Über Hyoscin und Atroscin. J Prakt Chem 172/64:353–386

    Article  Google Scholar 

  • Hesse O (1901b) Über die Alkaloide der Mandragorawurzel. J Prakt Chem 172/64:274–286

    Article  Google Scholar 

  • Hibi N, Fujita T, Hatano M, Hashimoto T, Yamada Y (1992) Putrescine N-methyltransferase in cultured roots of Hyoscyamus albus. Plant Physiol 100:826–835

    Article  PubMed  CAS  Google Scholar 

  • Hicks CS (1936) Observations on the chemistry of d-nornicotine, an alkaloid of Duboisia hopwoodii. Austral J Exptl Biol Med Sci 14:39–43

    Article  CAS  Google Scholar 

  • Hicks CS, LeMessurier H (1935) Preliminary observations on the chemistry and pharmacology of the alkaloids of Duboisia hopwoodii. Austral J Exptl Biol Med Sci 13:175–188

    Article  CAS  Google Scholar 

  • Hicks CS, Brucke FT, Heuber EF (1935) Pharmacology of Duboisia hopwoodii (d-nornicotine). Arch Internat Pharmacodynam Ther 51:335–353

    CAS  Google Scholar 

  • Holdsworth DK, Jones RA, Self R (1998) Volatile alkaloids from Areca catechu. Phytochemistry 48:581–582

    Article  CAS  Google Scholar 

  • Howes CD (1974) Nicotine inhibition of carotenoid cyclization in Cucurbita ficifolia cotyledons. Phytochemistry 13:1469–1471

    Article  CAS  Google Scholar 

  • Hsiao PK, Hsia KC, Ho LY (1973) Occurrence of important tropane alkaloids in Chinese solanaceous plants. Zhiwu Xuebao 15:187–194

    CAS  Google Scholar 

  • Huang MN, Abraham TW, Kim SH, Leete E (1996) 1-Methylpyrrolidine-2-acetic acid is not a precursor of tropane alkaloids. Phytochemistry 41:767–773

    Article  PubMed  CAS  Google Scholar 

  • Hueller H, Peters R, Scheler W, Schmidt D, Stremmel D (1971) Pharmacodynamics of withasomnine and two of its derivatives. Pharmazie 26:361–364

    CAS  Google Scholar 

  • Huesing J, Jones D (1987) A new form of antibiosis in Nicotiana. Phytochemistry 26:1381–1384

    Article  CAS  Google Scholar 

  • Huesing J, Jones D, Deverna J, Myers J, Collins G, Severson R, Sisson V (1989) Biochemical investigations of antibiosis material in leaf exudate of wild Nicotiana species and interspecific hybrids. J Chem Ecol 15:1203–1217

    Article  CAS  Google Scholar 

  • Humam M, Bieri S, Geiser L, Muñoz O, Veuthey JL, Christen P (2005) Separation of four isomeric tropane alkaloids from Schizanthus grahamii by non-aqueous capillary electrophoresis. Phytochem Anal 16:349–356

    Article  PubMed  CAS  Google Scholar 

  • Humphrey AJ, O’Hagan D (2001) Tropane alkaloid biosynthesis. A century old problem unresolved. Nat Prod Rep 18:494–502

    Article  PubMed  CAS  Google Scholar 

  • Hunziker AT (2001) Genera Solanacearum – the Genera of Solanaceae illustrated, arranged according to a new system. A.R.G. Gantner Verlag, Ruggell, Lichtenstein

    Google Scholar 

  • Husemann A, Hilger A, Husemann T (1884) Die Pflanzenstoffe in chemischer, physiologischer, pharmakologischer und toxikologischer Hinsicht, vol 2. Julius Springer, Berlin, pp. 1159–1180

    Google Scholar 

  • Ikeda K, Kato A, Adachi I, Haraguchi M, Asano N (2003) Alkaloids from the poisonous plant Ipomoea carnea: effects on intracellular lysosomal glycosidase activities in human lymphoblast cultures. J Agric Food Chem 51:7642–7646

    Article  PubMed  CAS  Google Scholar 

  • Ikhiri K, Koulodo DDD, Garba M, Mamane S, Ahond A, Poupat C, Potier P (1987) Nouveaux alcaloïdes indoliziniques isolés de Ipomoea alba. J Nat Prod 50:152–156

    Article  CAS  Google Scholar 

  • Ionkova I (2002) In vitro culture and the production of secondary metabolites in Hyoscyamus reticulatus L. In: Nagata T, Ebizuka Y (eds) Biotechnology in agriculture and forestry, vol 51. Springer, Berlin, Germany, pp 75–94

    Google Scholar 

  • Ionkova I, Witte L, Alfermann AW (1994) Spectrum of tropane alkaloids in transformed roots of Datura inoxia and Hyoscyamus × györffyi cultivated in vitro. Planta Med 60:382–384

    Article  PubMed  CAS  Google Scholar 

  • Ishimura K, Shimomura K (1989) 7ß-Hydroxyhyoscyamine from Duboisia myoporoides-D. leichhardtii hybrid and Hyoscyamus albus. Phytochemistry 28:3507–3509

    Article  Google Scholar 

  • Israilov I, Abduazimov KA, Yunusov SY (1965) Alkaloids of Ungernica and Convolvulus lineatus. Doklady Akad Nauk UzSSR 22:18–19

    CAS  Google Scholar 

  • Jackson BP, Berry MI (1973) Hydroxytropane tiglates in the roots of Mandragora species. Phytochemistry 12:1165–1166

    Article  CAS  Google Scholar 

  • Jackson DM, Johnson AW, Stephenson MG (2002) Survival and development of Heliothis virescens (Lepidoptera: Noctuidae) larvae on isogenic tobacco lines with different levels of alkaloids. J Econ Entomol 95:1294–1302

    Article  PubMed  CAS  Google Scholar 

  • Jackson KE (1941) Alkaloids of tobacco. Chem Rev 29:123–197

    Article  CAS  Google Scholar 

  • Jacob P III, Hatsukami D, Severson H, Hall S, Yu L, Benowitz NL (2002) Anabasine and anatabine as biomarkers for tobacco use during nicotine replacement therapy. Cancer Epidem Biomark Prevent 11:1668–1673

    CAS  Google Scholar 

  • Jain RK (2001) Clearing the smoke on nicotine and angiogenesis. Nature Med 7:775–777

    Article  PubMed  CAS  Google Scholar 

  • Jenett-Siems K (1996) Phytochemische Untersuchungen an Windengewächsen der Gattungen Calystegia, Convolvulus, Ipomoea und Merremia unter besonderer Berücksichtigung des Alkaloidvorkommens. Dissertation Fachbereich Pharmazie, Freie Universität Berlin/Germany

    Google Scholar 

  • Jenett-Siems K, Kaloga M, Eich E (1993) Ipangulines, the first pyrrolizidine alkaloids from the Convolvulaceae. Phytochemistry 34:437–440

    Article  Google Scholar 

  • Jenett-Siems K, Henrici A, Tofern B, Bufacchi-Richter A, Kaloga M, Witte L, Hartmann T, Eich E (1996) Occurrence and distribution of hygrines and tropanes in the convolvulaceous genus Merremia including the report on merredissine, an new tropane alkaloid. Proceedings of the 44th Annual Congress of the Society of Medicinal Plant Research, Prague, p 128

    Google Scholar 

  • Jenett-Siems K, Schimming T, Kaloga M, Eich E, Siems K, Gupta MP, Witte L, Hartmann T (1998a) Pyrrolizidine alkaloids of Ipomoea hederifolia and related species. Phytochemistry 47:1551–1560

    Article  CAS  Google Scholar 

  • Jenett-Siems K, Mann P, Kaloga M, Siems K, Jakupovic J, Eich E (1998b) Tropane alkaloids with a unique type of acyl moiety from two Convolvulus species. Phytochemistry 49:1449–1451

    Article  CAS  Google Scholar 

  • Jenett-Siems K, Ott SC, Schimming T, Siems K, Müller F, Hilker M, Witte L, Hartmann T, Austin DF, Eich E (2005a) Ipangulines and minalobines, chemotaxonomic markers of the infrageneric Ipomoea taxon subgenus Quamoclit, section Mina. Phytochemistry 66:223–231

    Article  PubMed  CAS  Google Scholar 

  • Jenett-Siems K, Weigl R, Böhm A, Mann P, Tofern-Reblin B, Ott SC, Ghomian A, Kaloga M, Siems K, Witte L, Hilker M, Müller F, Eich E (2005b) Chemotaxonomy of the pantropical genus Merremia (Convolvulaceae) based on the distribution of tropane alkaloids. Phytochemistry 66:1448–1464

    Article  PubMed  CAS  Google Scholar 

  • Jordan M, Humam M, Bieri S, Christen P, Poblete E, Muñoz O (2006) In vitro shoot and root organogenesis, plant regenaration and production of tropane alkaloids in some species of Schizanthus. Phytochemistry 67:570–578

    Article  PubMed  CAS  Google Scholar 

  • Jovankovics K (1966) Himalayan scopola (Anisodus luridus) roots cultivated in Hungarian Research Institute of Medical Plants. Herba Hungarica 5:41–44

    CAS  Google Scholar 

  • Jowett HAD, Pyman FL (1909) Relation between chemical constitution and physiological action in the tropeines. Part II. J Chem Soc 95:1020–1032

    CAS  Google Scholar 

  • Kagei K, Ikeda M, Sato T, Ogata Y, Toyoshima S, Matsuura S (1980) Studies on Duboisia species. V. Alkaloids in cultured cells of Duboisia leichhardtii. Yakugaku Zasshi 100:574–575

    CAS  Google Scholar 

  • Karrer P, Widmer R (1925) Konfiguration des Nikotins. Optisch aktive Hygrinsäure. Helv Chim Acta 8:364–368

    Article  CAS  Google Scholar 

  • Kato A, Asano N, Kizu H, Matsui K, Suzuki S, Arisawa M (1997) Calystegine alkaloids from Duboisia leichhardtii. Phytochemistry 45:425–429

    Article  CAS  Google Scholar 

  • Keiner R, Nakajami K, Hashimoto T, Dräger B (2000) Accumulation and biosynthesis of calystegines in potato. J Appl Bot/Angew Bot 74:122–125

    CAS  Google Scholar 

  • Keiner R, Kaiser H, Nakajami K, Hashimoto T, Dräger B (2002) Molecular cloning, expression and characterization of tropinone reductase II, an enzyme of the SDR family in Solanum tuberosum L. Plant Mol Biol 48:299–308

    Article  PubMed  CAS  Google Scholar 

  • Kennedy GS (1971) (−)-Hyoscyamine in Duboisia hopwoodii. Phytochemistry 10:1335–1337

    Article  CAS  Google Scholar 

  • Kenton A, Parakonny AS, Gleba YY, Bennett MD (1993) Characterization of the Nicotiana tabacum L. genome by molecular cytogenetics. Mol Gen Genet 240:159–169

    Article  PubMed  CAS  Google Scholar 

  • Keogh MF, O’Donovan DG (1970) Biosynthesis of some alkaloids of Punica granatum and Withania somnifera. J Chem Soc C (Organic) 1792–1797

    Google Scholar 

  • Kester KM, Peterson SC, Hanson F, Jackson DM, Severson RF (2002) The roles of nicotine and natural enemies in determining larval feeding site distributions of Manduca sexta L. and Manduca quinquemaculata HAWORTH on tobacco. Chemoecology 12:1–10

    Article  CAS  Google Scholar 

  • Khan MB, Harborne JB (1991) A comparison of the effect of mechanical and insect damage on alkaloid levels in Atropa acuminata. Biochem Syst Ecol 19:529–534

    Article  CAS  Google Scholar 

  • Kim JH, T’Hart H, Stevens JF (1996) Alkaloids of some Asian Sedum species. Phytochemistry 41:1319–1324

    Article  CAS  Google Scholar 

  • King H, Ware LL (1941) Alkaloids of Bulgarian belladonna root. J Chem Soc 331–337

    Google Scholar 

  • Kisaki T, Tamaki E (1966) Phytochemical studies of the tobacco alkaloids. X. Degradation of the tobacco alkaloids and their optical rotatory changes in tobacco plants. Phytochemistry 5:293–300

    Article  CAS  Google Scholar 

  • Kisaki T, Mizusaki S, Tamaki E (1968) Phytochemical studies on tobacco alkaloids. XI. A new alkaloid in Nicotiana tabacum roots. Phytochemistry 7:323–327

    Article  CAS  Google Scholar 

  • Kitamura Y, Hasegawa S, Miura H, Sugii M (1980) On the pyridine alkaloids of Duboisia myoporoides R.BR. cultivated in Nagasaki Prefecture. Shoyakugaku Zasshi 34:117–121

    CAS  Google Scholar 

  • Kitamura Y, Miura H, Sugii M (1985) Variations of alkaloids in the developing seedlings of Duboisia myoporoides R.BR. Shoyakugaku Zasshi 39:85–87

    CAS  Google Scholar 

  • Kitamura Y, Tominaga Y, Ikenaga T (2004) Winter cherry bugs feed on plant tropane alkaloids and de-epoxidize scopolamine to atropine. J Chem Ecol 30:2085–2090

    Article  PubMed  CAS  Google Scholar 

  • Klaassen CD (1995) Nonmetallic environmental toxicants. In: Hardman JG, Limbird LE, Molinoff PB, Ruddon RW, Goodman Gilman A (eds) Goodman & Gilman’s the pharmacological basis of therapeutics, 9th edn. McGraw-Hill, New York, pp 1673–1696

    Google Scholar 

  • Knapp S, Chase MW, Clarkson JJ (2004) Nomenclatural changes and a new sectional classification in Nicotiana. Taxon 53:73–82

    Article  Google Scholar 

  • Kraut K (1863) Ueber das Atropin. Liebigs Ann Chem 128:280–285

    Google Scholar 

  • Kraut K (1865) Ueber das Atropin. 2.Mitt. Liebigs Ann Chem 133:87–99

    Google Scholar 

  • Kraut K (1868) Ueber das Atropin. 3.Mitt. Liebigs Ann Chem 148:236–241

    Google Scholar 

  • Krug E, Proksch P (1993) Influence of dietary alkaloids on survival and growth of Spodoptera littoralis. Biochem Syst Ecol 21:749–756

    Article  CAS  Google Scholar 

  • Kubwabo C, Rollmann B, Tilquin B (1993) Analysis of alkaloids from Physalis peruviana by capillary GC, capillary GC-MS, and GC-FTIR. Planta Med 59:161–163

    Article  PubMed  CAS  Google Scholar 

  • Kuffner F, Faderl N (1956) Die Konstitution des Nicotellins. Monatsh Chem 87:71–81

    Article  CAS  Google Scholar 

  • Kusano G, Orihara S, Tsukamoto D, Shibano M, Coskun M, Guvenc A, Erdurak CS (2002) Five new nortropane alkaloids and six new amino acids from the fruit of Morus alba LINNÉ growing in Turkey. Chem Pharm Bull 50:185–192

    Article  PubMed  CAS  Google Scholar 

  • Ladenburg A (1879) Künstliches Atropin. Ber 12:941–944

    Google Scholar 

  • Ladenburg A (1880) Ueber das Duboisin. Ber 13:257–258

    Google Scholar 

  • Ladenburg A (1881a) Die natürlich vorkommenden mydriatisch wirkenden Alkaloide. Liebigs Ann Chem 206:274–307

    Article  Google Scholar 

  • Ladenburg A (1881b) Über das Hyoscin. Ber 14:1870–1872

    Google Scholar 

  • Ladenburg A, Hundt C (1889) Ueber die Darstellung optisch activer Tropasäure und optisch activer Atropine. Ber 22:2590–2592

    Google Scholar 

  • Laiblin R (1877) Zur Kenntnis des Nicotins. Ber 10:2136–2140

    Google Scholar 

  • Laiblin R (1879) Ueber Nicotin und Nicotinsäure. Liebigs Ann Chem 196:129–182

    Article  Google Scholar 

  • Langone JJ, Gjika HB, van Vunakis H (1999) Use of immunoassay techniques fort he determination of nicotine and its metabolites. In: Gorrod JW, Jacob P III (eds) Analytical determination of nicotine and related compounds and their metabolites. Elsevier, Amsterdam, pp 265–283

    Chapter  Google Scholar 

  • Laue G, Preston CA, Baldwin IT (2000) Fast track to the trichome: induction of N-acylnornicotines precedes nicotine induction in Nicotiana repanda. Planta 210:510–514

    Article  PubMed  CAS  Google Scholar 

  • Lazur’evskii GV (1939) Alkaloids from Convolvulus hamadae. Sbornik Rabot Khim 15:43–52

    Google Scholar 

  • Leary JD, Khanna KL, Schwarting AE, Bobbitt JM (1963) Occurrence of cuscohygrine and 3t-tigloyloxytropane in Withania somnifera. Lloydia (J Nat Prod) 25:44–48

    CAS  Google Scholar 

  • Leary JD, Bobbitt JM, Rother A, Schwarting AE (1964) Structure and synthesis of the alkaloid anahygrine. Chem & Ind (London, UK) 283–284

    Google Scholar 

  • Leete E (1967) Biosynthesis of the Nicotiana alkaloids. XI. Investigation of tautomerism in N-methyl-Δ1-pyrrolinium chloride and its incorporation into nicotine. J Am Chem Soc 89:7081–7084

    Article  PubMed  CAS  Google Scholar 

  • Leete E (1969) Biosynthesis of the Nicotiana alkaloids. XIV. The incorporation of Δ1-piperideine-6-14C into the piperidine ring of anabasine. J Am Chem Soc 91:1697–1700

    Article  PubMed  CAS  Google Scholar 

  • Leete E (1977) The incorporation of [5, 6-13C2]-nicotinic acid into the tobacco alkaloids examined by the use of carbon-13 nuclear magnetic resonance. Biorg Chem 6:273–286

    Article  CAS  Google Scholar 

  • Leete E (1979) The metabolism of anatabine to α,ß-dipyridyl in Nicotiana species. Phytochemistry 18:75–78

    Article  CAS  Google Scholar 

  • Leete E (1983) Biosynthesis and metabolism of the tobacco alkaloids. In: Pelletier SW (ed) Alkaloids – chemical and biological perspectives, vol 1. Wiley, New York, pp 85–152

    Google Scholar 

  • Leete E (1985) Biosynthesis of hygrine from [5-14C]ornithine via a symmetrical intermediate in Nicandra physaloides. Phytochemistry 24:953–955

    Article  CAS  Google Scholar 

  • Leete E (1990) Recent developments in the biosynthesis of the tropane alkaloids. Planta Med 56:339–352

    Article  PubMed  CAS  Google Scholar 

  • Leete E, Chedekel MR (1972) The aberrant formation of (−)-N-methylanabasine from N-methyl-Δ1-piperideinium chloride in Nicotiana tabacum and N. glauca. Phytochemistry 11:2751–2756

    Article  CAS  Google Scholar 

  • Leete E, Chedekel MR (1974) Metabolism of nicotine in Nicotiana glauca. Phytochemistry 13:1853–1859

    Article  CAS  Google Scholar 

  • Leete E, Kim SH (1988) A revision of the generally accepted hypothesis for the biosynthesis of the tropane moiety of cocaine. J Am Chem Soc 110:2976–2978

    Article  CAS  Google Scholar 

  • Leete E, Mueller ME (1982) Biomimetic synthesis of anatabine from 2, 5-dihydropyridine produced by the oxidative decarboxylation of baikiain. J Am Chem Soc 104:6440–6444

    Article  CAS  Google Scholar 

  • Leete E, Kim SH, Rana J (1988) The incorporation of [2-13C, 14C, 15N]-1-methyl −Δ1-pyrrolinium chloride into cuscohygrine in Erythroxylum coca. Phytochemistry 27:401–406

    Article  CAS  Google Scholar 

  • Leete E, Endo T, Yamada Y (1990) Biosynthesis of nicotine and scopolamine in a root culture of Duboisia leichhardtii. Phytochemistry 29:1847–1851

    Article  CAS  Google Scholar 

  • Leffingwell JC (1999) Leaf chemistry: basic chemical constituents of tobacco leaf and differences among tobacco types. In: Davis DL, Nielsen MT (eds) Tobacco – production, chemistry and technology. Blackwell Science, Oxford, UK, pp 265–284

    Google Scholar 

  • Leistner E, Spenser D (1973) Biosynthesis of the piperidine nucleus. Incorporation of chirally labelled [1-3H]cadaverine. J Am Chem Soc 95:4715–4725

    Article  PubMed  CAS  Google Scholar 

  • Leunis J, Frank AB (1885) Synopsis der Pflanzenkunde, vol 2. Hahn’sche Buchhandlung, Hannover, pp 590–594

    Google Scholar 

  • Lewin L (1923) Die Pfeilgifte: nach eigenen und ethnologischen Untersuchungen. Verlag JA Barth, Leipzig – Reprographischer Nachdruck Gerstenberg Verlag, Hildesheim/Germany, 2. Auflage (1984)

    Google Scholar 

  • Lewis SJ, Cherry NM, Niven RM, Barber PV, Wilde K, Povey AC (2003) Cotinine levels and self-reported smoking status in patients attending a bronchoscopy clinic. Biomarkers 8:218–239

    Article  PubMed  CAS  Google Scholar 

  • Liebermann C (1889) Über Hygrin. Ber 22:675–679

    Google Scholar 

  • Liebermann C, Cybulski G (1895) Über Hygrin und Hygrinsäure. Ber 28:578–585

    CAS  Google Scholar 

  • Liebisch HW, Schütte HR (1985) Alkaloids derived from ornithine. In: Mothes K, Schütte HR, Luckner M (eds) Biochemistry of alkaloids. VCH Verlagsgesellschaft, Weinheim/Germany, pp 106–127

    Google Scholar 

  • Linné C von (1788) Allgemeines Register über die in den sämtlichen dreyzehn Theilen des Linneischen Pflanzensystems beschriebenen Gattungen und Arten nebst einem besondern die denselben eigenen Synonymen erläuternden. Vierzehnter Theil. Raspische Buchhandlung, Nürnberg, Germany

    Google Scholar 

  • Lippiello PM, Caldwell WS, Marks MJ, Collins AC (1994) Development of nicotinic agonists for the treatment of Alzheimer’s disease. Alzheimer Dis 186–190

    Google Scholar 

  • Liu T, Zhu P, Cheng KD, Meng C, He HX (2005) Molecular cloning, expression and characterization of hyoscyamine 6β-hydroxylase from hairy roots of Anisodus tanguticus. Planta Med 71:249–253

    Article  PubMed  CAS  Google Scholar 

  • Lockwood TE (1973) Generic recognition of Brugmansia. Bot Mus Leafl (Harvard Univ.) 23:273–283

    Google Scholar 

  • Loftus Hills K, Trautner EM, Rodwell CN (1946) A tobacco-Duboisia graft. Austral J Sci 9:24–25

    Google Scholar 

  • Loftus Hills K, Bottomley W, Mortimer PI (1953) Occurrence of nicotine together with hyoscine in Duboisia myoporoides. Nature (London) 171:435

    Article  Google Scholar 

  • Loftus Hills K, Bottomley W, Mortimer PI (1954a) Variation in the main alkaloids of Duboisia myoporoides and Duboisia leichhardtii. II. Duboisia myoporoides. Austral J Appl Sci 5:258–275

    Google Scholar 

  • Loftus Hills K, Bottomley W, Mortimer PI (1954b) Variation in the main alkaloids of Duboisia myoporoides and Duboisia leichhardtii. III. Duboisia leichhardtii. Austral J Appl Sci 5:276–282

    Google Scholar 

  • Long RC, Weybrew JA (1981) Major chemical changes during senescence and curing. Recent Adv Tob Sci 7:40–74

    CAS  Google Scholar 

  • Lossen W (1864) Ueber das Atropin (2.Mitt.) Liebigs Ann Chem 131:43–49

    Google Scholar 

  • Lossen W (1865) Ueber das Cocain. Liebig Ann Chem 133: 351–371

    Google Scholar 

  • Lossen W (1866) Ueber das Atropin (3.Mitt.) Liebigs Ann Chem 138:230–241

    Google Scholar 

  • Lou Y, Baldwin IT (2003) Manduca sexta recognition and resistance among allopolyploid Nicotiana host plants. Proc Natl Acad Sci USA 100:14581–14586

    Article  PubMed  CAS  Google Scholar 

  • Lounasmaa M, Tamminen T (1993) The tropane alkaloids. In: Cordell GA (ed) The alkaloids – chemistry and pharmacology, vol 44. Academic Press, San Diego (CA)/USA, pp 1–114

    Google Scholar 

  • Lovkova MY, Minozhedinova NS, Il’in GS (1976) Alkaloid spectrum at early stages of development of Nicotiana glauca. Izvestiya Akademii Nauk SSSR, Seriya Biologicheskaya:455–458

    Google Scholar 

  • Lovkova MY, Kliment’eva NI, Sabirova NS, Moiseev RK, Buzuk GN (1994) Metabolism of alkaloids. Expansion of the nicotinic pyrrolidine heterocycle to piperidine anabasine. Izvestiya Akademii Nauk SSSR, Seriya Biologicheskaya:5–13

    Google Scholar 

  • Lu Y, Yao T, Chen Z (1986) Constituents of Erycibe elliptilimba. Yaoxue Xuebao 21:829–835

    CAS  Google Scholar 

  • Luanratana O, Griffin WJ (1982) Alkaloids of Duboisia hopwoodii. Phytochemistry 21:449–451

    Article  CAS  Google Scholar 

  • Lukes R, Kovar J, Kloubek J, Blaha K (1960) Configuration of nitrogen-containing compounds. VII. Absolute configuration of hygrine and hygroline. Collection of Czechoslovak Chemical Communications 25:483–491

    CAS  Google Scholar 

  • Mace ES, Gebhardt CG, Lester EN (1999) AFLP analysis of genetic relationships in the tribe Datureae (Solanaceae) Theor Appl Genet 99:634–641

    Article  CAS  Google Scholar 

  • Maeda S, Matsushita H, Mikami Y, Kisaki T (1980) Structural changes of N-methylmyosmine based on pH. Agric Biol Chem 44:1643–1645

    CAS  Google Scholar 

  • Maienfisch P, Brandl F, Kobel W, Rindlisbacher A, Senn R (1999). CGA 293ʹ343: a novel, broad-spectrum neonicotinoid insecticide. In: Yamamoto I, Casida JE (eds) Nicotinoid insecticides and the nicotinic acetylcholine receptor. Springer, Tokyo, pp 177–209

    Google Scholar 

  • Majumdar DN (1952) Alkaloidal constituents of Withania somnifera. Curr Sci 21:46

    CAS  Google Scholar 

  • Majumdar DN (1955) Withania somnifera. II. Alkaloidal constituents and their chemical characterization. Ind J Pharm 17:158–61

    CAS  Google Scholar 

  • Mann DF, Byerrum RU (1974) Activation of the de novo pathway for pyridine nucleotide biosynthesis prior to ricinine biosynthesis in castor beans. Plant Physiol 53:603–609

    Article  PubMed  CAS  Google Scholar 

  • Mann P (1997) Zur Phytochemie und Chemotaxonomie tropischer und mediterraner Convolvulaceen unter besonderer Berücksichtigung des Alkaloidvorkommens. Dissertation, Fachbereich Pharmazie, Freie Universität Berlin/Germany

    Google Scholar 

  • Mann P, Eich E, Witte L, Hartmann T (1996) GC-MS study on the alkaloid pattern of Merremia quinquefolia (L.) H.HALL. f.: First occurrence of retronecine esters, simple phenylethylamine derivatives, and pyrrolidides in the Convolvulaceae. Book of Abstracts, 44th Annual Congress of the Society for Medicinal Plant Research and a Joint Meeting with the Czech Biotechnology Society, Prague/Czech Republic, p 148 (P 251)

    Google Scholar 

  • Mann P, Kaloga M, Witte L, Hartmann T, Eich E (1997) Complex alkaloid type pattern of Merremia quinquefolia (L.) H.HALL.: first occurrence of pyrrolidides, retronecine type pyrrolizidine alkaloids, and simple phenylethylamine derivatives in the Convolvulaceae. Book of Abstracts, IOCD/CYTED International Joint Symposium “Chemistry, Biological and Pharmacological Properties of Medicinal Plants from the Americas”, Panama City, A-12

    Google Scholar 

  • Manos PS, Miller RE, Wilkin P (2001) Phylogenetic analysis of Ipomoea, Argyreia, Stictocardia, and Turbina suggests a generalized model of morphological evolution in morning glories. Syst Bot 26:585–602

    Google Scholar 

  • Manske RHF, Marion L (1942) The alkaloids of Lycopodium species. I. Lycopodium complanatum L. Can J Res 20B:87–92

    Google Scholar 

  • Marion L (1939) The occurrence of l-nicotine in Asclepias syriaca. Can J Res 17B:21–22

    Google Scholar 

  • Marion L (1945) The alkaloids of Sedum acre. Can J Res 23B:165–166

    CAS  Google Scholar 

  • Marion L, Manske RHF (1948) Alkaloids of Lycopodium species. X. Lycopodium cernuum. Can J Res 26B:1–2

    CAS  Google Scholar 

  • Martin RJ, Clark CL, Trailovic SM, Robertson AP (2004) Oxantel is an N-type (methyridine and nicotine) agonist not an L-type (levamisole and pyrantel) agonist: classification of cholinergic anthelmintics in Ascaris. Int J Parasit 34:1083–1090

    Article  CAS  Google Scholar 

  • Martinetz D (1994) Rauschdrogen und Stimulantien. Urania-Verlag Leipzig/Germany

    Google Scholar 

  • Massiot G, Delaude C (1986) Pyrrolidine alkaloids. In: Brossi A (ed) The alkaloids – chemistry and pharmacology, vol 27. Academic Press, San Diego, pp 270–321

    Google Scholar 

  • Matsuda K, Kimura M, Komai K, Hamada M (1989) Nematicidal activities of (−)-N-methylcytisine and (−)-anagyrine from Sophora flavescens against pine wood nematodes. Agric Biol Chem 53:2287–2288

    CAS  Google Scholar 

  • Matsuo H, Tomizawa M, Yamamoto I (1998) Structure-activity relationships of acyclic nicotinoids and neonicotinoids for insect nicotinic acetylcholine receptor/ion channel complex. Arch Insect Biochem Physiol 37:17–23

    Article  CAS  Google Scholar 

  • Matsushita H, Tsujino Y, Yoshida D, Saito A, Kisaki T, Kato K, Noguchi M (1979) New minor alkaloids in flue-cured tobacco leaf (Nicotiana tabacum cv. BY-260–9). Agric Biol Chem 43:193–194

    CAS  Google Scholar 

  • Matsuzaki T, Miyano M, Yasumatsu N, Matsushita H, Koiwai A (1988) Germination and growth inhibition of acylnornicotines from Section Repandae of the genus Nicotiana and synthetic acylnornicotines. Agric Biol Chem 52:1899–1903

    CAS  Google Scholar 

  • McGaw BA, Woolley JG (1978a) The biosynthesis of hygrine and tropane alkaloids. J Pharm Pharmacol 30:Suppl 83P

    Google Scholar 

  • McGaw BA, Woolley JG (1978b) Stereochemistry of tropane alkaloid formation in Datura. Phytochemistry 17:257–259

    Article  CAS  Google Scholar 

  • McGaw BA, Woolley JG (1979) Metabolism of hygrine in Atropa, Hyoscyamus and Physalis. Phytochemistry 18:189–190

    Article  CAS  Google Scholar 

  • Mehra KL (1979) Ethnobotany of old world Solanaceae. In: The biology and taxonomy of the Solanaceae. Linnean Society Symposium Series No. 7. Academic Press, London, pp 161–170

    Google Scholar 

  • Meikle AW, Liu XH, Taylor GN, Stringham JD (1988) Nicotine and cotinine effects on 3α-hydroxysteroid dehydrogenase in canine prostate. Life Sci 43:1845–1850

    Article  PubMed  CAS  Google Scholar 

  • Mein (1833) Ueber die Darstellung des Atropins in weißen Krystallen. Liebigs Ann Chem 6:67–72

    Google Scholar 

  • Miller RE, Rausher MD, Manos PS (1999) Phylogenetic systematics of Ipomoea (Convolvulaceae) based on ITS and waxy sequences. Syst Bot 24:209–227

    Article  Google Scholar 

  • Miller RE, McDonald JA, Manos PS (2004) Systematics of Ipomoea subgenus Quamoclit (Convolvulaceae) based on ITS sequence data and a Bayesian phylogenetic analysis. Am J Bot 91:1208–1218

    Article  Google Scholar 

  • Minina SA, Astakhova TV, Gromova EG, Ovchinnikova AA (1976) Production and pahrmacological study of cuscohygrine dimethiodide. Khimiko-Farmatsevticheskii Zhurnal 10:69–73

    CAS  Google Scholar 

  • Mirzamatov RT, Malikov VM, Lutfullin KL, Yunusov SY (1972) Alkaloids of Physochlaina dubia. Khim Prir Soedin 8:493–495

    CAS  Google Scholar 

  • Miyano M, Matsushita H, Yasumatsu N, Nishida K (1979) New minor alkaloids in burley tobacco (Nicotiana tabacum) Agric Biol Chem 43:1607–1608

    CAS  Google Scholar 

  • Miyano M, Yasumatsu N, Matsushita H, Nishida K (1981) 1ʹ-(6-Hydroxyoctanoyl) nornicotine and 1ʹ-(7-hydroxyoctanoyl) nornicotine, two new alkaloids from Japanese domestic tobacco. Agric Biol Chem 45:1029–1032

    CAS  Google Scholar 

  • Mizusaki S, Tanabe Y, Noguchi M, Tamaki E (1971) Phytochemical studies on tobacco alkaloids. XIV. Occurrence and properties of putrescine N-methyltransferase in tobacco roots. Plant Cell Physiol 12:633–640

    CAS  Google Scholar 

  • Mizusaki S, Tanabe Y, Noguchi M, Tamaki E (1972) N-Methylputrescine oxidase from tobacco roots. Phytochemistry 11:2757–2762

    Article  CAS  Google Scholar 

  • Molyneux RJ, Pan YT, Goldmann A, Tepfer DA, Elbein AD (1993) Calystegines, a novel class of alkaloid glycosidase inhibitors. Arch Biochem Biophys 304:81–88

    Article  PubMed  CAS  Google Scholar 

  • Molyneux RJ, McKenzie RA, O’Sullivan BM, Elbein AD (1995) Identification of the glycosidase inhibitors swainsonine and calystegine B2 in Weir vine (Ipomoea sp. Q6 [aff. calobra]) and correlation with toxicity. J Nat Prod 58:878–886

    Article  PubMed  CAS  Google Scholar 

  • Molyneux RJ, Nash RJ, Asano N (1996) The chemistry and biological activity of calystegines and related nortropane alkaloids. In: Pelletier SW (ed) Alkaloids: chemical and biological perspectives, vol 11. Pergamon/Elsevier Science, London, pp 303–343

    Chapter  Google Scholar 

  • Morris CE (1983) Uptake and metabolism of nicotine by the CNS of a nicotine-resistant insect, the tobacco hornworm (Manduca sexta). J Insect Physiol 29:807–817

    Article  CAS  Google Scholar 

  • Mortimer PI (1957) A note on Duboisia myoporoides from the Acacia Plateau, near Killarney, Queensland. Austral J Sci 20:87–88

    CAS  Google Scholar 

  • Mortimer PI, Wilkinson S (1957) The occurrence of nicotine, anabasine, and isopelletierine in Duboisia myoporoides. J Chem Soc (London):3967–3970

    Google Scholar 

  • Mothes K, Romeike A (1954) Nicotin als Ursache der Unverträglichkeit von Pfropfungen. Flora 142:109–131

    CAS  Google Scholar 

  • Muñóz MA, Muñóz O, Joseph-Nathan P (2006) Absolute configuration of natural diastereoisomers of 6β-hydroxyhyoscyamine by vibrational circular dichroism. J Nat Prod 69:1335–1340

    Article  PubMed  CAS  Google Scholar 

  • Muñóz O, Casale JF (2003) Tropane alkaloids from Latua pubiflora. Z Naturforsch 58c:626–628

    Google Scholar 

  • Muñóz O, Cortés S (1998) Tropane alkaloids from Schizanthus porrigens. Pharm Biol 36: 162–166

    Article  Google Scholar 

  • Muñóz O, Hartmann R, Breitmaier E (1991) Schizanthine X, a new alkaloid from Schizanthus grahamii. J Nat Prod 54:1094–1096

    Article  Google Scholar 

  • Muñóz O, Schneider C, Breitmaier E (1994) A new pyrrolidine alkaloid from Schizanthus integrifolius. Liebigs Ann Chem:521–522

    Google Scholar 

  • Muñóz O, Piovano M, Garbarino J, Hellwig V, Breitmaier E (1996) Tropane alkaloids from Schizanthus litoralis. Phytochemistry 43:709–713

    Article  Google Scholar 

  • Musser RO, Cipollini DF, Hum-Mussser SM, Williams SA, Brown JK, Felton GW (2005) Evidence that the caterpillar salivary enzyme glucose oxidase provides herbivore offense in solanaceous plants. Arch Insect Biochem Physiol 58:128–137

    Article  PubMed  CAS  Google Scholar 

  • Nash RJ, Rothschild M, Porter EA, Watson AA, Waigh RD, Waterman PG (1993) Calystegines in Solanum and Datura species and the death’s-head hawk-moth (Acherontia atropus). Phytochemistry 34:1281–1283

    Article  CAS  Google Scholar 

  • Nash RJ, Watson AA, Winters AL, Fleet GWJ, Wormald MR, Dealer S, Lees E, Asano N, Molyneux RJ (1998) Glycosidase inhibitors in British plants as causes of livestock disorders. In: Garland T, Barr AC (eds) Toxic plants and other natural toxicants. CAB International, Wallingford, UK, pp 276–284

    Google Scholar 

  • Neuwinger HD (1996) African ethnobotany – poisons and drugs. Chapman & Hall, London

    Google Scholar 

  • Neuwinger HD (1998) Alkaloids in arrow poisons. In: Roberts MF, Wink M (eds) Alkaloids – biochemistry, ecology, and medicinal applications. Plenum Press, New York, pp 45–84

    Google Scholar 

  • Newquist ML, Abraham TW, Leete E (1993) Biosynthetic incorporation of ethyl (RS) [2, 3-13C2, 3-14C]-4-(1-methyl-2-pyrrolidinyl)-3-oxobutanoate into cuscohygrine in Erythroxylum coca. Phytochemistry 33:1437–1440

    Article  CAS  Google Scholar 

  • Niemann A (1860) Ueber eine organische Base in der Coca. Liebigs Ann Chem 114:213–217

    Google Scholar 

  • Nishikawa K, Miyamura M, Hirata Y (1967) Chemotaxonomical alkaloid studies. II. Structures of kuramerine and kumokirine. Tetrahedron Lett 27:2597–2600

    Article  PubMed  CAS  Google Scholar 

  • Nytredy S, Groß GA, Sticher O (1986) Minor alkaloids from Nicotiana tabacum. J Nat Prod 49:1156–1157

    Article  Google Scholar 

  • O’Brien CP (1995) Drug addiction and drug abuse. In: Hardman JG, Limbird LE, Molinoff PB, Ruddon RW, Goodman Gilman A (eds) Goodman & Gilman’s the pharmacological basis of therapeutics, 9th edn. McGraw-Hill, New York, pp 557–577

    Google Scholar 

  • O’Donovan DG, Forde TJ (1970) Biosynthesis of withasominine, a unique pyrazole alkaloid. Tetrahedron Lett:3637–3638

    Google Scholar 

  • O’Donovan DG, Keogh MF (1968) Biosynthesis of piperidine alkaloids. Tetrahedron Lett 265–267

    Google Scholar 

  • O’Donovan DG, Keogh MF (1969) The role of hygrine in the biosynthesis of cuscohygrine and hyoscyamine. J Chem Soc C:223–226

    Google Scholar 

  • O’Hagan D, Robins RJ (1998) Tropic acid ester biosynthesis in Datura stramonium and related species. Chem Soc Rev 27:207–212

    Article  Google Scholar 

  • Ober D, Hartmann T (1999) Homospermidine synthase, the first pathway-specific enzyme of pyrrolizidine alkaloid biosynthesis, evolved from deoxyhypusine synthase. Proc Natl Acad Sci USA 96:14777–14782

    Article  PubMed  CAS  Google Scholar 

  • Ober D, Gibas L, Witte L, Hartmann T (2003) Evidence for general occurrence of homospermidine in plants and its supposed origin of deoxyhypusine synthase. Phytochemistry 62:339–344

    Article  PubMed  CAS  Google Scholar 

  • Orechoff A (1929) The alkaloids of Anabasis aphylla. C R Acad Sci 189:945

    Google Scholar 

  • Orechoff A, Konowalowa R (1933) Über die Alkaloide von Convolvulus pseudocantabricus SCHRENK. (1.Mitt.) Arch Pharm 271:145–148

    Article  Google Scholar 

  • Orechoff A, Konowalowa R (1934) Über die Alkaloide von Convolvulus pseudocantabricus (2. Mitt.) Ber 67:1153–1156

    Google Scholar 

  • Orechoff A, Konowalowa R (1935) Über die Alkaloide von Convolvulus pseudo-cantabricus, III. Mitteil.: Konstitution des Convolvins und Isolierung von zwei neuen Basen. Ber 68:814–819

    Google Scholar 

  • Orechoff A, Konowalowa R (1937) Über die Alkaloide von Convolvulus pseudocantabricus. Zh Obscej Khimii 7:646–653

    Google Scholar 

  • Orechoff A, Menschikoff G (1931) Über die Alkaloide von Anabasis aphylla L. I. Ber 64:266–274

    Google Scholar 

  • Orechoff A, Menschikoff G (1932) Über die Alkaloide von Anabasis aphylla II. Zur Konstitution des Anabasins. Ber 65B:232–234

    Google Scholar 

  • Osawa Y, Tochigi B, Tochigi M, Ohnishi S, Watanabe Y, Bullion K, Osawa G, Nakabayashi Y, Yarborough C (1990) Aromatase inhibitors in cigarette smoke, tobacco leaves and other plants. J Enzyme Inhibit 4:187–200

    Article  CAS  Google Scholar 

  • Ott SC, Jenett-Siems K, Pertz HH, Siems K, Witte L, Eich E (2006) Bonabiline A, a monoterpenoid 3α-acyloxytropane from the roots of Bonamia spectabilis showing M3 receptor antagonis activity. Planta Med 72:1403–1406

    Article  PubMed  CAS  Google Scholar 

  • Ott SC, Tofern-Reblin B, Jenett-Siems K, Siems K, Müller F, Hilker M, Onegi B, Witte L, Eich E (2007) Unusual tropane alkaloid pattern in two African convolvulaceous species. Z Naturforsch 62b:285–288

    Google Scholar 

  • Parello J, Longevialle P, Vetter W, McCloskey, JA (1963) Structure of phyllalbine. Application of nuclear magnetic resonance and mass spectrometry to the study of tropane derivatives. Bull Soc Chim France, 2787–2793

    Google Scholar 

  • Parr AJ (1992) Alternative metabolic fates of hygrine in transformed root cultures of Nicandra physalodes. Plant Cell Rep 11:270–273

    Article  CAS  Google Scholar 

  • Parr AJ, Payne J, Eagles J, Chapman BT, Robins RJ, Rhodes MJC (1990) Variation in tropane alkaloid accumulation within the Solanaceae and strategies for its exploitation. Phytochemistry 29:2545–2550

    Article  CAS  Google Scholar 

  • Pena RC, Muñóz O (2002) Cladistic relationship in the genus Schizanthus (Solanaceae). Biochem Syst Ecol 30:45–53

    Article  CAS  Google Scholar 

  • Peterson N (1979) Aboriginal uses of Australian Solanaceae. In: The biology and taxonomy of the Solanaceae. Linnean Society Symposium Series No. 7. Academic Press, London, pp 171–189

    Google Scholar 

  • Petit (1879) Nicotine from Duboisia hopwoodii. J Pharm Chim 29:338–341

    Google Scholar 

  • Petrie JM (1917a) The chemical investigation of some poisonous plants in the natural order Solanaceae.III. Occurrence of nor-hyoscyamine in Solandra longiflora. Proc Linnean Soc NSW 41:815–822

    CAS  Google Scholar 

  • Petrie JM (1917b) The chemical investigation of some poisonous plants in the natural order Solanaceae. V. Proc Linnean Soc NSW 42:137–145

    Google Scholar 

  • Philipov S, Berkov S (2002) GC-MS investigation of tropane alkaloids in Datura stramonium. Z Naturforsch 57c:559–561

    Google Scholar 

  • Phillipson JD, Handa SS (1975a) Nicotine N-oxides. Phytochemistry 12:2683–2690

    Article  Google Scholar 

  • Phillipson JD, Handa SS (1975b) N-Oxides of hyoscyamine and hyoscine. Phytochemistry 14:999–1003

    Article  CAS  Google Scholar 

  • Phillipson JD, Melville C (1960) An investigation of the alkaloids of some British species of Equisetum. J Pharm Pharmacol 12:506–508

    PubMed  CAS  Google Scholar 

  • Pictet A, Genequand P (1897) Ueber die Jodmethylate des Nicotins. Ber 30:2117–2125

    CAS  Google Scholar 

  • Pictet A, Rotschy A (1901) Über neue Alkaloide des Tabaks. Ber 34:696–708

    CAS  Google Scholar 

  • Pictet A, Rotschy A (1904) Synthese des Nicotins. Ber 37:1225–1235

    CAS  Google Scholar 

  • Pinner A (1893) Ueber Nicotin (5.Mitt.) Ber 26:292–305

    Google Scholar 

  • Pinner A (1895) Ueber Nicotin (9.Mitt.) Ber 28:456–465

    CAS  Google Scholar 

  • Platonova TF, Kuzovkov AD (1963) Alkaloids of Cochlearia arctica. Med Prom SSR (Med Ind UdSSR) 17:19–20

    Google Scholar 

  • Plowman T, Gyllenhaal LO, Lindgren JE (1971) Latua pubiflora–magic plant from Southern Chile. Bot Mus Leafl Harvard Univ 23:61–92

    CAS  Google Scholar 

  • Pomilio AB, Gonzalez MD, Eceizabarrena CC (1996) 7, 8-Dihydroajugasterone C, norhygrine and other constituents of Nierembergia hippomanica. Phytochemistry 41:1393–1398

    Article  CAS  Google Scholar 

  • Posselt W, Reimann L (1828) Chemische Untersuchung des Tabaks und Darstellung eines eigenthümlich wirksamen Prinzips dieser Pflanze. Poggend Ann Phys Chem 8:399–410

    Google Scholar 

  • Pyman FL, Reynolds WC (1908) Meteloidine. A new solanaceous alkaloid. J Chem Soc (Transact) 93:2077–2081

    Article  CAS  Google Scholar 

  • Rabinovich MS, Konovalova RA (1946) Alkaloids of the Himalayan scopola Anisodus luridus LINK & OTTO. Zhumal Obshchei Khimii 16:2121–2125

    CAS  Google Scholar 

  • Rabot S, Peerless ACJ, Robins RJ (1995) Tigloyl-CoA:pseudotropine acyl transferase – an enzyme of tropane alkaloid biosynthesis. Phytochemistry 39:315–322

    Article  CAS  Google Scholar 

  • Rang HP, Dale MM, Ritter JM (1999). Pharmacology, 4th ed. Churchill Livingstone, Edinburgh, p 672

    Google Scholar 

  • Rätsch C (1995) äh kib lu’um–“Das Licht der Erde”–Der Fliegenpilz bei den Lakandonen und in der Neuen Welt. Curare 18:67–93

    Google Scholar 

  • Rätsch C (2005) The encyclopedia of psychoactive plants – ethnopharmacology and its applications. Inner Traditions, Vermont, USA

    Google Scholar 

  • Ravikanth V, Ramesh P, Diwan PV, Venkateswarlu Y (2001) Pyrazole alkaloids from Elytraria acaulis. Biochem Syst Ecol 29:753–754

    Article  PubMed  CAS  Google Scholar 

  • Ray AB, Sahai M, Sethi PD (1976) Physoperuvine, a new alkaloid of Physalis peruviana L. Chem Ind (London):454–455

    Google Scholar 

  • Ray AB, Oshima Y, Hikino H, Kabuto C (1982) Revised structure of physoperuvine, an alkaloid of Physalis peruviana roots. Heterocycles 19:1233–1236

    Article  CAS  Google Scholar 

  • Razzakov NA, Aripova SF, Akhmedova E, Karimov A (1999) Alkaloids of Mandragora turcomanica. Chem Nat Comp (Khim Prir Soed) 34:741–742

    Article  Google Scholar 

  • Razzakov NA, Aripova SF, Yunusov SY (2004) Confolidine, a new alkaloid from the aerial part of Convolvulus subhirsutus. Chem Nat Comp 40:54–55

    Article  CAS  Google Scholar 

  • Reimann A, Nurhayati N, Backenköhler A, Ober D (2004) Repeated evolution of the pyrrolizidine alkaloid-mediated defense system in separate angiosperm lineages. Plant Cell 16:1772–2784

    Article  Google Scholar 

  • Remington JP, Wood HC (eds) (1918) The dispensatory of the United States of America, 20th edn. J.B. Lippincott, Philadelphia, USA

    Google Scholar 

  • Reynouts-van Haga P (1954) Cuscohygrine, a normal alkaloid of Atropa belladonna. Nature (London) 174:833–834

    Article  Google Scholar 

  • Richardson CH, Shepard HH (1930) The insecticidal action of some derivatives of pyridine and pyrrolidine and some aliphatic amines. J Agric Res 40:1007–1015

    CAS  Google Scholar 

  • Richardson CH, Craig LC, Hansberry TR (1936) Toxic action of nicotine, nornicotine and anabasine upon Aphis rumicis. J Econ Entomol 26:850–855

    CAS  Google Scholar 

  • Riechers DE, Timko MP (1999) Structure and expression of the gene family encoding putrescine N-methyltransferase in Nicotiana tabacum: new clues to the evolutionary origin of cultivated tobacco. Plant Mol Biol 41:387–401

    Article  PubMed  CAS  Google Scholar 

  • Ripperger H (1979) Schizanthin A und B, zwei neue Tropanalklaoide aus Schizanthus pinnatus. Phytochemistry 18:171–173

    Article  CAS  Google Scholar 

  • Ripperger H (1995) S-(−)-Scopolamine and S-(−)-norscopolamine from Atropanthe sinensis. Planta Med 61:292–293

    PubMed  Google Scholar 

  • Rizvi SJH, Mishra GP, Rizvi V (1989a) Allelopathic effects of nicotine on maize. I. Its possible importance in crop rotation. Plant and Soil 116:289–291

    Article  CAS  Google Scholar 

  • Rizvi SJH, Mishra GP, Rizvi V (1989b) Allelopathic effects of nicotine on maize. Some aspects of its mechanism of action. Plant Soil 116:292–293

    CAS  Google Scholar 

  • Robins DJ (1995) Biosynthesis of pyrrolizidine and quinolizidine alkaloids. In: The alkaloids – chemistry and pharmacology, vol 46. Academic Press, San Diego, CA, USA, pp 1–62

    Google Scholar 

  • Robins RJ, Walton NJ (1993) The biosynthesis of tropane alkaloids. In: Cordell GA (ed) The alkaloids – chemistry and pharmacology, vol 44. Academic Press, San Diego (CA), USA, pp 115–187

    Google Scholar 

  • Robins RJ, Parr AJ, Payne J, Walton NJ, Rhodes MJC (1990) Factors regulating tropane-alkaloid production in a transformed root culture of a Datura candida × D. aurea hybrid. Planta 181:414–422

    Article  CAS  Google Scholar 

  • Robins RJ, Bachmann P, Peerless ACJ, Rabot S (1994) Esterification reactions in the biosynthesis of tropane alkaloids in transformed root cultures. Plant Cell Tissue Org Cult 38:241–247

    Article  CAS  Google Scholar 

  • Robins RJ, Abraham TW, Parr AJ, Eagles J, Walton NJ (1997) The biosynthesis of tropane alkaloids in Datura stramonium: the identity of intermediates between N-methylpyrrolinium salt and tropinone. J Am Chem Soc 119:10929–10934

    Article  CAS  Google Scholar 

  • Robinson R (1928) Proceedings of the University of Durham Philosophical Society, 1927–1932, vol 8, p 14; fide O’Hagan and Robins 1998

    Google Scholar 

  • Robinson R (1955) The structural relations of natural products. Clarendon Press, Oxford, UK, p 59; fide O’Hagan and Robins 1998

    Google Scholar 

  • Roeder E (1995) Medicinal plants in Europe containing pyrrolizidine alkaloids. Pharmazie 50:83–98

    PubMed  CAS  Google Scholar 

  • Rojo HP, Quiroga EN, Vattuone MA, Sampietro AR (1998) Nicotiana glauca invertase: characterization and effects of endogenous alkaloids. Phytochemistry 49:965–969

    Article  CAS  Google Scholar 

  • Romeike A (1965a) Über das Vorkommen von Hygrin in Wurzeln von Nicandra physaloides (L.) GAERTN. Pharmazie 20:738–739

    PubMed  CAS  Google Scholar 

  • Romeike A (1965b) Hygrin, das Hauptalkaloid der Nicandra-Wurzeln. Naturwissenschaften 52:619

    Article  CAS  Google Scholar 

  • Romeike A (1966) Presence of tropinone in Nicandra roots. Naturwissenschaften 53:82

    Article  PubMed  CAS  Google Scholar 

  • Rosenblum EI (1954) Alkaloid variation in wild and cultivated Duboisia leichhardtii. Austral J Appl Sci 5:51–62

    CAS  Google Scholar 

  • Rosenblum EI, Taylor WS (1954) The alkaloids of Duboisia leichhardtii: butropine and valtropine. J Pharm Pharmacol 6:410–415

    PubMed  CAS  Google Scholar 

  • Roth HJ (2005) Viergliedrige Ringe. Dtsch Apoth Ztg 145, 2036–2042

    Google Scholar 

  • Rothe G, Garske U, Dräger B (2001) Calystegines in root cultures of Atropa belladonna respond to sucrose, not to elicitation. Plant Sci 160:1043–1053

    Article  PubMed  CAS  Google Scholar 

  • Rother A, Bobbitt JM, Schwarting AE (1962) Structure and synthesis of the alkaloid anaferine. Chem Ind (London):654–655

    Google Scholar 

  • Rothera ACH (1911) The alkaloid of pituri obtained from Duboisia hopwoodii. Biochem J 5:193–206

    PubMed  CAS  Google Scholar 

  • Runge F (1824) [Atropin-Nachweis durch Pupillenerweiterung] Ann Chim Phys (2), 27; fide Czapek (1925), p 280

    Google Scholar 

  • Runge F (1825) [Atropin-Nachweis durch Pupillenerweiterung] Schweigg J 43:483 (1825) fide Czapek (1925), p 280

    Google Scholar 

  • Sahai M, Ray AB (1980) Secotropane alkaloids of Physalis peruviana. J Org Chem 45:3265–3268

    Article  CAS  Google Scholar 

  • Saitoh F, Noma M, Kawashima N (1985) The alkaloid contents of sixty Nicotiana species. Phytochemistry 24:477–480

    Article  CAS  Google Scholar 

  • Salin-Pascual RJ, Alcocer-Castillejos NV, Alejo-Galarza G (2003) Nicotine dependence and psychiatric disorders. Rev Invest Clin 55:677–693

    PubMed  CAS  Google Scholar 

  • San-Martin A, Rovirosa J, Gambaro V, Castillo M (1980) Tropane alkaloids from Schizanthus hookeri. Phytochemistry 19:2007–2008

    Article  CAS  Google Scholar 

  • San-Martin A, Labbé C, Muñóz O, Castillo M, Reina M, de la Funte G, González A (1987) Tropane alkaloids from Schizanthus grahamii. Phytochemistry 26:819–822

    Article  CAS  Google Scholar 

  • Sarychev Y, Sherstyanykh NA (1985) Pyridine bases in the genus Nicotiana. Tabak (Moscow) 2:6–12

    Google Scholar 

  • Savikin-Fodulovic KP, Bulatovic VM, Menkovic NR, Grubisic DV (2000) Comparison between the essential oil of Myrtus communis L. obtained from naturally grown and in vitro plants. J Ess Oil Res 12:75–78

    CAS  Google Scholar 

  • Schimming T (2003) Beiträge zur Chemotaxonomie und Phylogenie der Convolvulaceen auf der Basis des Alkaloidvorkommens. Dissertation, Fachbereich Biologie, Chemie, Pharmazie, Freie Universität Berlin, Germany

    Google Scholar 

  • Schimming T, Tofern B, Mann P, Richter A, Jenett-Siems K, Dräger B, Asano N, Gupta MP, Correa MD, Eich E (1998) Distribution and taxonomic significance of calystegines in the Convolvulaceae. Phytochemistry 49:1989–1995

    Article  CAS  Google Scholar 

  • Schimming T, Jenett-Siems K, Mann P, Tofern-Reblin B, Milson J, Johnson RW, Deroin T, Austin DF, Eich E (2005) Calystegines as chemotaxonomic markers in the Convolvulaceae. Phytochemistry 66:469–480

    Article  PubMed  CAS  Google Scholar 

  • Schmeller T, Sporer F, Sauerwein M, Wink M (2000) Binding of tropane alkaloids to nicotinic and muscarinic acetylcholine receptors. Pharmazie 50:493–495

    Google Scholar 

  • Schmidt E (1892) Über Scopolamin (Hyoscin) 1. Mitt. Arch Pharm 230:207–231

    Article  Google Scholar 

  • Schmidt E (1894) Über das Scopolamin. 2. Mitt. Arch Pharm 232:409–437

    Article  CAS  Google Scholar 

  • Schmidt E, Henschke H (1888) Über die Alkaloide der Wurzel von Scopolia japonica. Arch Pharm 226:185–199

    Article  Google Scholar 

  • Schneider MJ, Brendze S, Montali JA (1995) Alkaloids of Picea breweriana. Phytochemistry 39:1387–1390

    Article  CAS  Google Scholar 

  • Schneider NG, Jacob P III, Nilsson F, Leischow SJ, Benowitz NL, Olmstead RE (1997) Saliva cotinine levels as a function of collection method. Addiction 92:347–351

    Article  PubMed  CAS  Google Scholar 

  • Scholl Y, Höke D, Dräger B (2001) Calystegines in Calystegia sepium derive from the tropane alkaloid pathway. Phytochemistry 58:883–889

    Article  PubMed  CAS  Google Scholar 

  • Scholl Y, Schneider B, Dräger B (2003) Biosynthesis of calystegines: 15N NMR and kinetics of formation in root cultures of Calystegia sepium. Phytochemistry 62:325–332

    Article  PubMed  CAS  Google Scholar 

  • Schreiber K, Sembdner G (1960) Über die spezifische Wirkung einiger Solanaceen-Alkaloide auf den Kartoffelnematoden, Heterodera rostochiensis WOLL. Planta Med. 8:107–113

    Article  CAS  Google Scholar 

  • Schröter HB (1955) Über den Nachweis von Nikotin in der Composite Zinnia elegans und die Bedeutung dieses Alkaloids für die interfamiliäre Propfung Zinnia auf Nicotiana. Arch Pharm 288:141–145

    Article  Google Scholar 

  • Schröter HB (1958) Ein Alkaloid aus Salpiglossis sinuata. Naturwissenschaften 45:338

    Article  Google Scholar 

  • Schröter HB (1963) Biosynthese von Pyridin-Alkaloiden. Abhandl Deut Akad Wiss Berlin, Kl Chem Geol Biol (4):99–101

    Google Scholar 

  • Schröter HB, Neumann D, Katritzky AR, Swinbourne FJ (1966) Withasomnine. A pyrazole alkaloid from Withania somnifera DUN. Tetrahedron 22:2895–2897

    Article  Google Scholar 

  • Schulte KE, Rücker G, El-Kersch M (1972) Nicotin und 3-Formyl-4-hydroxy-2H-pyran aus Herpestis monniera. Phytochemistry 11:2649–2651

    Article  CAS  Google Scholar 

  • Schultes RE (1979) Solanaceous hallucinogens and their role in the development of New World cultures. In: Hawkes, Lester, Skelding (eds) The biology and taxonomy of the Solanaceae. Linn Soc Symp Ser, vol 7. Linnean Soc & Academic Press, London, pp 137–160

    Google Scholar 

  • Schwarting AE, Bobbitt JM, Rother A, Atal CK, Khanna KL, Leary JD, Walter WG (1963) The alkaloids of Withania somnifera. Lloydia (J Nat Prod) 26:258–273

    CAS  Google Scholar 

  • Scott TA, Lynn JP (1967) The incorporation of [2, 3, 7,-14C]nicotinic acid into nicotine by Nicotiana tabacum. Phytochemistry 6:505–510

    Article  CAS  Google Scholar 

  • Self LS, Guthrie FE, Hodgson E (1964) Adaptation of tobacco hornworms to the ingestion of nicotine. J Insect Physiol 10:907–914

    Article  CAS  Google Scholar 

  • Senft E (1911) Duboisia hopwoodii F.MUELL. (Pituri). Pharmaz Praxis 1

    Google Scholar 

  • Severson RF, Huesing JE, Jones D, Arrendale RF, Sisson VA (1988a) Identification of tobacco hornworm antibiosis factor from cuticle of Repandae section of Nicotiana species. J Chem Ecol 14:1485–1494

    Article  CAS  Google Scholar 

  • Severson RF, Arrendale RF, Cutler HG, Jones D, Sisson VA, Stephenson MG (1988b) Chemistry and biological activity of acylnornicotines from Nicotiana repanda. In: Cutler (ed), Biologically active natural products: potential use in agriculture. ACS Symposium Series 380. American Chemical Society, Washington/Oxford University Press, pp 335–362

    Google Scholar 

  • Sevón N, Dräger B, Hiltunen R, Oksman-Caldentey KM (1997) Characterization of transgenic plants derived from hairy roots of Hyoscyamus muticus. Plant Cell Rep 16:605–611

    Article  Google Scholar 

  • Shang Y, Wang YF, Liang YX, Cai NS (2003) The effect of several memory-improving agents on memory impairment in mice by anisodine. Zhongguo Xinyao Zazhi 12:821–823

    CAS  Google Scholar 

  • Sharova EG, Aripova SF, Yunusov SY (1980) Alkaloids of Convolvulus subhirsutus. Khim Prir Soedin:672–676

    Google Scholar 

  • Shaw S, Bencherif M, Marrero MB (2003) Angiotensin II blocks nicotine-mediated neuroprotection against ß-amyloid (1–42) via activation of the tyrosine phosphatase SHP-1. J Neurosci 23:11224–11228

    PubMed  CAS  Google Scholar 

  • Shepherd JA (1999) Nematode pests of tobacco. In: Davis DL, Nielsen MT (eds) Tobacco – production, chemistry and technology. Blackwell Science, Oxford, pp 216–227

    Google Scholar 

  • Shmuk AA, Borozdina A (1941) Alkaloids of various plant species within the genus Nicotiana. C R (Doklady) Acad Sci URSS 32:62–65

    CAS  Google Scholar 

  • Shonle I, Bergelson J (2000) Evolutionary ecology of the tropane alkaloids of Datura stramonium L. (Solanaceae). Evolution 54:778–788

    PubMed  CAS  Google Scholar 

  • Shukla YN, Thakur RS (1992) Tropane alkaloids from Duboisia myoporoides. Phytochemistry 31:4389–4390

    Article  CAS  Google Scholar 

  • Siddiqi MA, Suri KA, Suri OP, Atal CK (1979) New pyrrolizidine alkaloids from Crotalaria candicans. Phytochemistry 18:1413–1415

    Article  CAS  Google Scholar 

  • Siddiqui S, Sultana N, Ahmed SS, Haider SI (1986) Isolation and structure of a new alkaloid datumetine from the leaves of Datura metel. J Nat Prod 49:511–513

    Article  CAS  Google Scholar 

  • Siegmund B, Leitner E, Pfannhauser W (1999) Determination of the nicotine content of various edible nightshades (Solanaceae) and their products and estimation of the associated dietary nicotine intake. J Agric Food Chem 47:3113–3120

    Article  PubMed  CAS  Google Scholar 

  • Silva M, Mancinelli P (1959) Atropina en Latua pubiflora (Griseb.) Phil Boletin Soc Chil Quim 9:49–50

    CAS  Google Scholar 

  • Sim KL, Perry D (1997) Analysis of swainsonine and its early metabolic precursors in cultures of Metarhizium anisopliae. Glycoconj J 14:661–668

    Article  PubMed  CAS  Google Scholar 

  • Siminszky B, Gavilano L, Bowen SW, Dewey RE (2005) Conversion of nicotine to nornicotine in Nicotiana tabacum is mediated by CYP82E4, a cytochrome P450 monooxygenase. PNAS 102:14919–14924

    Article  PubMed  CAS  Google Scholar 

  • Singh J, Dhar KL, Atal CK (1971) Studies on the genus Piper: part XII. Structure of trichonine, a new N-pyrrolidinyl-eicosa-trans, trans-2, 4-dienamide. Tetrahedron Lett:2119–2120

    Google Scholar 

  • Sisson VA, Severson RF (1990) Alkaloid composition of the Nicotiana species. Beiträge zur Tabakforschung International 14:327–339

    CAS  Google Scholar 

  • Siva Raju K, Krishnamurthy GVG (1996) Biochemical changes in tobacco plants infested with root-knot nematode Meloidogyne javanica. Tobacco Res 22:116–119

    CAS  Google Scholar 

  • Smith CR (1937) Occurrence of l-nornicotine in Nicotiana sylvestris. J Econ Entomol 20:724–727

    CAS  Google Scholar 

  • Smith HH, Abashian DV (1963) Chromatographic investigations on the alkaloid content of Nicotiana species and interspecific combinations. Am J Bot 50:435–447

    Article  CAS  Google Scholar 

  • Smith HH, Smith CR (1942) Alkaloids in certain species and interspecific hybrids of Nicotiana. J Agric Res 65:347–359

    CAS  Google Scholar 

  • Snyder MJ, Hsu EL, Feyereisen R (1993) Induction of cytochrome P-450 activities by nicotine in the tobacco hornworm, Manduca sexta. J Chem Ecol 19:2903–2916

    Article  CAS  Google Scholar 

  • Soeda Y, Yamamoto I (1969) Nicotinoids as insecticides. VIII. Physiological activities of the optical isomers of nicotinoids. Bochu Kagaku 34:57–62

    CAS  Google Scholar 

  • Solt ML, Dawson RF, Christman DR (1960) Biosynthesis of anabasine and of nicotine by excised root cultures of Nicotiana glauca. Plant Physiol 35:887–894

    Article  PubMed  CAS  Google Scholar 

  • Song W, Liu J, Jin R (1997) Chemical constituents of the stems of Erycibe schmidtii CRAIB. Zhongguo Zhongyao Zazhi (China J Chin Mat Med) 22:359–360, 384

    CAS  Google Scholar 

  • Späth E, Kesztler F (1937a) Tabak-Basen. XI. Mitteil. l-Anatabine, ein neues Tabakalkaloid. Ber. 70B:239–243

    Google Scholar 

  • Späth E, Kesztler F (1937b) Tabak-Alkaloide. XII. Mitteil. Über das Vorkommen von dl-Nor-nicotin, dl-Anatabine und l-Anabasine im Tabak. Ber. 70B:704–709

    Google Scholar 

  • Späth E, Kesztler F (1937c) Tabak-Alkaloide. XIII. Mitteil. Über neue Basen des Tabaks. Ber 70B:2450–2454

    Google Scholar 

  • Späth E, Zajic E (1935) Tabak-Basen. III. l-Nor-nicotin. Ber 68B:1667–1670

    Google Scholar 

  • Späth E, Zajic E (1936) Über neue Tabak-Alkaloide (VIII. Teil über Tabakbasen) und Bemerkungen zur Kenntnis des Rhoeadins, des l-Peganins und des Ammoresinols. Ber 69B:2448–2452

    Google Scholar 

  • Späth E, Hicks CS, Zajic E (1935) Über d-Nor-nicotin, ein Alkaloid von Duboisia hopwoodii F.v.Muell. Ber 68B:1388–1393

    Google Scholar 

  • Späth E, Wenusch A, Zajic E (1936) Tabak-Basen. V. Mitteil. Die Konstitution des Myosmins. Ber 69B:393–396

    Google Scholar 

  • Staub H (1962) Über die chemischen Bestandteile der Mandragorawurzel. 2. Die Alkaloide. Helv Chim Acta 45:2297–2305

    Article  CAS  Google Scholar 

  • Stech M, Austin DF, Schimming T, Eich E (2007) Phylogenetic inference in Ipomoea section Mina (Convolvulaceae): Molecular relationships and the significance of phytochemical and morphological characters (to be published)

    Google Scholar 

  • Steinegger E (1972) Alkaloiddrogen. In: Steinegger E, Hänsel R (eds) Lehrbuch der Phar-makognosie – Auf phytochemischer Grundlage, 3. Aufl. Springer Verlag, Berlin

    Google Scholar 

  • Steinegger E, Phokas G (1955) Zur Konstitution von Bellaradin. Pharm Acta Helv 30:441–443

    PubMed  CAS  Google Scholar 

  • Stenzel O, Teuber M, Dräger B (2006) Putrescine N-methyltransferase in Solanum tuberosum L., a calystegine-forming plant. Planta 223:200–212

    Article  PubMed  CAS  Google Scholar 

  • Steppuhn A, Gase K, Krock B, Halitschke R, Balwin IT (2004) Nicotine’s defensive function in nature. PLoS Biol 2:1074–1080

    Article  CAS  Google Scholar 

  • Stevens JF, T’Hart H, Hendricks H, Malingre TM (1992) Alkaloids of some European and Macaronesian Sedoideae and Sempervivoideae (Crassulaceae). Phytochemistry 31:3917–3924

    Article  CAS  Google Scholar 

  • Stumpf PK, Jones AT (1963) The biosynthesis of long chain fatty acids by lettuce chloroplasts. Biochem Biophys Acta 70:20–32

    Article  PubMed  CAS  Google Scholar 

  • Suzuki U, Shamimura T, Odake S (1912) Über Oryzanin, ein Bestandteil der Reiskleie, und seine physiologische Bedeutung. Biochem Z 43:89–153

    CAS  Google Scholar 

  • Taylor P (1995) Agents acting at the neuromuscular junction and autonomic ganglia. In: Hardman JG, Limbird LE, Molinoff PB, Ruddon RW, Goodman Gilman A (eds) Goodman & Gilman’s the pharmacological basis of therapeutics, 9th edn. McGraw-Hill, New York, pp 177–197

    Google Scholar 

  • Tepfer D, Goldmann A, Pamboukdjian N, Maille M, Lepingle A, Chevalier D, Dénarié J, Rosenberg C (1988) A plasmid of Rhizobium meliloti 41 encodes catabolism of two compounds from root exudates of Calystegia sepium. J Bacteriol 170:1153–1161

    PubMed  CAS  Google Scholar 

  • Teuscher E, Lindequist U (1994) Biogene Gifte – Biologie, Chemie, Pharmakologie. Gustav Fischer Stuttgart, p 471

    Google Scholar 

  • Tiburcio AF, Galston AW (1985) Arginine decarboxylase as the source of putrescine for tobacco alkaloids. Phytochemistry 25:107–110

    Article  Google Scholar 

  • Todd FG, Stermitz FR, Schultheis P, Knight AP, Traub-Dargatz J (1995) Tropane alkaloids and toxicity of Convolvulus arvensis. Phytochemistry 39:301–303

    Article  PubMed  CAS  Google Scholar 

  • Tofern B (1999) Neue und seltene Sekundärstoffe des Phenylpropan-, Terpen- und Alkaloid-Stoffwechsels aus tropischen Convolvulaceen. Dissertation, Fachbereich Pharmazie, Freie Universität Berlin, Germany

    Google Scholar 

  • Tofern B, Kaloga M, Witte L, Hartmann T, Eich E (1996) Comparative study of two convolvulaceous species: complex pattern of alkaloids in Ipomoea muricata and Ipomoea alba. Book of Abstracts, 44th Annual Congress of the Society for Medicinal Plant Research and a Joint Meeting with the Czech Biotechnology Society, Prague, p 146 (P 247)

    Google Scholar 

  • Tofern B, Mann P, Kaloga M, Jenett-Siems K, Witte L, Eich E (1999) Aliphatic pyrrolidine amides from two tropical convolvulaceous species. Phytochemistry 52:1437–1441

    Article  CAS  Google Scholar 

  • Tolksdorff W, Meisel R, Müller P, Bender HJ (1985) Transdermales Scopolamin (TTS-Scopolamin) zur Prophylaxe postoperativer Übelkeit und Erbrechen. Anaesthesist 34:656–663

    Google Scholar 

  • Tomizawa M, Yamamoto I (1992) Binding of nicotinoids and the related compounds to the insect nicotinic acetylcholine receptor. J Pestic Sci (Internat Ed) 17:231–236

    CAS  Google Scholar 

  • Trautner EM, McCallum IAN (1950) The action of tropine and heliotridine-alkaloids on the excitation, propagation, and recovery in muscle. Austral J Exp Biol Med Sci 28:343–360

    Article  CAS  Google Scholar 

  • Trigo JR, Brown KS Jr, Henriques SA, Barata LES (1996) Qualitative patterns of pyrrolizidine alkaloids in Ithomiinae butterflies. Biochem Syst Ecol 24:181–188

    Article  CAS  Google Scholar 

  • Tso TC (1999) Seed to smoke. In: Davis DL, Nielsen MT (eds) Tobacco – production, chemistry and technology. Blackwell Science, Oxford, pp 1–31

    Google Scholar 

  • Vakhabov AA, Sultanov MB, Mirzamatov RT (1975) Pharmacology of 6-hydroxyhyoscyamine. Doklady Akademii Nauk USSR 26

    Google Scholar 

  • Vasinev VS (1970) Composition of alkaloids in hybrids and wild species of tobacco. Studencheskie Nauchnye Raboty, Universitet Druzhby Narodov, No. 15, pp 108–112

    Google Scholar 

  • Vauquelin LN (1809a) Tobacco. Ann Chim 71:139–157; fide Czapek (1925), p 277

    Google Scholar 

  • Vauquelin LN (1809b) Atropa belladonna. Ann Chim 72: 53; fide Czapek (1925) p 280

    Google Scholar 

  • Vitale AA, Acher A, Pomilio AB (1995) Alkaloids of Datura ferox from Argentina. J Ethnopharmacol 49:81–89

    PubMed  CAS  Google Scholar 

  • Wahl R (1952) Über das Vorkommen und den Nachweis kleinster Nikotinmengen in Tomatenblättern. Tabak-Forschung No 8:3

    Google Scholar 

  • Wahl R (1953) Tabak-Forschung No 10:3–4 fide Hegnauer R (1973) Chemotaxonomie der Pflanzen vol. 6. Birkhäuser, Basel, p 407

    Google Scholar 

  • Wahlberg I (1999) Smokeless tobacco. In: Davis DL, Nielsen MT (eds) Tobacco – production, chemistry and technology. Blackwell Science, Oxford, pp 452–460

    Google Scholar 

  • Wahlberg I, Karlsson K, Austin DJ, Junker N, Roeraade J, Enzell C, Johnson WH (1977) Tobacco chemistry. Part 38. Effects of flue-curing and aging on the volatile, neutral and acidic constituents of Virginia tobacco. Phytochemistry 16:1217–1231

    Article  CAS  Google Scholar 

  • Wang P, Yao T, Chen Z (1989) Chemical constituents of Erycibe hainensis. Zhiwu Xuebao 31:616–619

    CAS  Google Scholar 

  • Wang ZB, Wu XQ (1979) Variation of the contents of two alkaloids in Anisodus tanguticus. Zhiwu Xuebao 21:85–87

    CAS  Google Scholar 

  • Warfield AH, Galloway WD, Kallianos AG (1972) New alkaloids from burley tobacco. Phytochemistry 11:3371–3375

    Article  CAS  Google Scholar 

  • Waterman PG (1998) Alkaloid chemosystematics. In: Cordell GA (ed) The alkaloids – chemistry and biology. Academic Press, San Diego, pp 537–567

    Chapter  Google Scholar 

  • Watson AA, Davies DR, Asano N, Winchester B, Kato A, Molyneux RJ, Stegelmeier BL, Nash RJ (2000) Calystegine alkaloids in the potato and other food plants. In: Natural and selected synthetic toxins: biological implications, ACS Symposium Series, vol 745. Oxford University Press, Washington DC, pp 129–139

    Chapter  Google Scholar 

  • Watson AA, Fleet GWJ, Asano N, Molyneux RJ, Nash RJ (2001) Polyhydroxylated alkaloids – natural occurrence and therapeutic applications. Phytochemistry 56:265–295

    Article  PubMed  CAS  Google Scholar 

  • Watson PL, Luanratana O, Griffin WJ (1983) The ethnopharmacology of pituri. J Ethnopharmacol 8:303–311

    Article  PubMed  CAS  Google Scholar 

  • Weeks WW (1999) Relationship between leaf chemistry and organoleptic properties of tobacco smoke. In: Davis DL, Nielsen MT (eds) Tobacco – production, chemistry and technology. Blackwell Science, Oxford, pp 304–312

    Google Scholar 

  • Weigl R (1992) Entdeckung, Isolierung und Strukturaufklärung neuer Alkaloide im Rahmen chemotaxonomischer Untersuchungen an Convolvulaceen. Dissertation, Fachbereich Pharmazie, Freie Universität Berlin, Germany

    Google Scholar 

  • Weigl R, Kaloga M, Eich E (1992) Merresectines: novel tropane alkaloids from Merremia dissecta roots. Planta Med 58:A705

    Article  Google Scholar 

  • Wenusch A (1935) Über das Auftreten von Nicotyrin im Tabak. Biochem Z 275:361

    CAS  Google Scholar 

  • Westendorf J (1992) Pyrrolizidine alkaloids – general discussion. In: De Smet PAG, Keller K, Hänsel R, Chandler RF (eds) Adverse effects of herbal frugs, vol 1. Springer, Berlin, Germany, pp 192–205

    Google Scholar 

  • Wilbert J (1972) Tobacco and shamanistic ecstasy among the Warrao Indians of Venezuela. In: Furst PT (ed) Flesh of the gods. Praeger Publisher, New York, pp 55–83

    Google Scholar 

  • Wilhelm H, Wilhelm B, Schiefer U (1991) Mydriasis caused by plant contact. Fortschr Opthalm 88:588–591

    CAS  Google Scholar 

  • Willstätter R (1898a) Ueber die Constitution des Tropins. Ber 30:2679–2719

    Google Scholar 

  • Willstätter R (1898b) Ueber die Constitution der Spaltungsproducte von Atropin und Cocain. Ber 31:1534–1553

    Google Scholar 

  • Wink M (1998) Chemical ecology of alkaloids. In: Roberts MF, Wink M (eds) Alkaloids. Plenum, New York, pp 265–300

    Google Scholar 

  • Wink M (2000) Interference of alkaloids with neuroreceptors and ion channels. In: Atta-ur-Rahman (ed) Studies in natural products chemistry, vol 21. Bioactive natural products (Part B). Elsevier, Amsterdam, pp 3–122

    Google Scholar 

  • Wink M (2003) Evolution of secondary metabolites from an ecological and molecular phylogenetic perspective. Phytochemistry 64:3–19

    Article  PubMed  CAS  Google Scholar 

  • Winterstein E, Trier G (1931) Die Alkaloide, 2nd edn. Borntraeger, Berlin, p 1031

    Google Scholar 

  • Witte L, Müller K, Arfmann HA (1987) Investigation of the alkaloid pattern of Datura inoxia plants by capillary gas-liquid-chromatography-mass spectrometry. Planta Med 53:192–197

    Article  PubMed  CAS  Google Scholar 

  • Wöhler F, Lossen W (1862) Fortsetzung der Untersuchungen über die Coca und das Cocain. Liebigs Ann Chem 121:372–375

    Google Scholar 

  • Wolfes O, Hromatka O (1933) Über ein Tropanderivat aus Cocablättern. Jahresberichte E. Merck, Darmstadt, pp 45–53

    Google Scholar 

  • Wollweber D, Tietjen K (1999) Chloronicotinyl insecticides: a success of the new chemistry. In: Yamamoto I, Casida JE (eds) Nicotinoid insecticides and the nicotinic acetylcholine receptor. Springer, Tokyo, pp 109–125

    Google Scholar 

  • Wolters B (1994) Drogen, Pfeilgift und Indianermedizin – Arzneipflanzen aus Südamerika. Urs Freund Verlag, Greifenberg, Germany

    Google Scholar 

  • Xiao P, He L, Wang L (1983) Constituents in Tibetan traditional medicines. Zhongyao Tongbao 9:10–11

    Google Scholar 

  • Xie JX, Yang JH, Zhao YX, Zhang YX, Zhang CZ (1983) Absolute configuration of (−)-anisodine (a new ganglio blocking agent) and (−)-anisodinic acid. Sci Sin Ser B (Chung-kuo K’o Hsueh Yuan, Chu Pan) 26:931–935

    CAS  Google Scholar 

  • Yajima A, Yabuta G (2001) Synthesis and absolute configuration of MQ-A3 [1-(14ʹ-methylhexadecanoyl) pyrrolidine], a novel aliphatic pyrrolidine amide from the tropical convolvulaceous species. Biosci Biotech Biochem 65:463–465

    Article  CAS  Google Scholar 

  • Yamada T, Takahashi H, Hatano R (1999) A novel insecticide, acetamiprid. In: Yamamoto I, Casida JE (eds) Nicotinoid insecticides and the nicotinic acetylcholine receptor. Springer, Tokyo, pp 149–176

    Google Scholar 

  • Yamada Y, Endo T (1984) Tropane alkaloid production in cultured cells of Duboisia leichhardtii. Plant Cell Rep 3:168–188

    Article  Google Scholar 

  • Yamada Y, Hashimoto T (1989) Substrate specifity of the hyoscyamine 6β-hydroxylase from cultured roots of Hyoscyamus niger. Proc Jpn Acad, Ser B Phys Biol Sci 65:156–159

    Article  CAS  Google Scholar 

  • Yamaguchi H, Nishimoto K (1965) Studies on the alkaloids of the root of Physalis alkekengi (I). Isolation of 3α-tigloyloxytropane. Chem Pharm Bull 13:217–220

    PubMed  CAS  Google Scholar 

  • Yamaguchi H, Numata A, Hokimoto (1974) Studies on the alkaloids of Physalis alkekengi (II). J Pharm Soc Jpn 94:1115–1123

    CAS  Google Scholar 

  • Yamamoto I, Kamimura H, Yamamoto R, Sakai S, Goda M (1962) Studies on nicotinoids as an insecticide. I. Relation of structure to toxicity. Agric Biol Chem 26:709–716

    CAS  Google Scholar 

  • Yamamoto I, Soeda Y, Kamimura H, Yamamoto R (1968) Nicotinoids as insecticides. VII. Cholinesterase inhibition by nicotinoids and pyridylalkylamines, its significance to mode of action. Agr Biol Chem 32:1341–1348

    CAS  Google Scholar 

  • Yamamoto I, Yabuta G, Tomizawa M, Saito T, Miyamoto T, Kagabu S (1995) Molecular mechanism for selective toxicity of nicotinoids and neonicotinoids. Nippon Noyaku Gakkaishi 20:33–40

    CAS  Google Scholar 

  • Yamamoto I, Tomizawa M, Saito T, Miyamoto T, Walcott EC, Sumikawa K (1998) Structural factors contributing to insecticidal and selective actions of neonicotinoids. Arch Insect Biochem Physiol 37:24–32

    Article  PubMed  CAS  Google Scholar 

  • Yao T, Chen Z, Yi D, Xu G (1981) Chemical study on Bao Gong-teng (Erycibe obtusifolia BENTH.). II. Structure of baogongteng A – a new myotic agent. Yaoxue Xuebao 16:582–588

    CAS  Google Scholar 

  • Yunusov SY, Shakirov TT, Plekhanova NV (1958) Alkaloids of Convolvulus subhirsutus. Doklady Akademii Nauk USSR 10:17–20

    Google Scholar 

  • Zador E, Jones D (1986) The biosynthesis of a novel nicotine alkaloid in the trichomes of Nicotiana stocktonii. Plant Physiol 82:479–484

    Article  PubMed  CAS  Google Scholar 

  • Zhang J, Xu M (1995) Synthesis and antispasmodic activity of pyrrolidine alkaloid derivatives. Zhongguo Yaowu Huaxue Zazhi 5:109–112

    CAS  Google Scholar 

  • Zhaolou Y, Naijue Z, Renrong L, Shaopei C, Xiafei L, Zhujin L (1985) Crystal and molecular structure of ipohardine picrate, C15H16NOxC6H2N3O7. Jiegou Huaxue 4:152–155

    Google Scholar 

Download references

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

(2008). Ornithine-Derived Alkaloids. In: Solanaceae and Convolvulaceae: Secondary Metabolites. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-74541-9_3

Download citation

Publish with us

Policies and ethics