Skip to main content

Interdiffused GaInNAsSb Quantum Well on GaAs for 1,300–1,550 nm Diode Lasers

  • Chapter
Dilute III-V Nitride Semiconductors and Material Systems

Part of the book series: Materials Science ((SSMATERIALS,volume 105))

  • 1794 Accesses

Current state-of-the-art GaInNAsSb quantum well lasers emitting in the 1,550 nm regime can only be realized by molecular beam epitaxy due to the ease and efficient incorporation of Sb-species into the GaInNAs material system. The pursuit of GaInNAsSb materials systems by metalorganic chemical vapor deposition is still immature due to the challenges in incorporating Sb- and dilute-N-species into GaInAs layer simultaneously under optimum growth conditions. This chapter presents a novel approach to realize GaInNAsSb quantum well, which allows one to circumvent the challenges present in the metalorganic chemical vapor deposition epitaxy of this quinary material system. Our approach combines the already-established metalorganic chemical vapor deposition growth of GaInNAs and GaInAsSb quantum wells, with a postgrowth rapid-thermal annealing that leads to interdiffusion of Sb and N-species, resulting in high-quality interdiffused GaInNAsSb quantum well. Our studies indicated emission wavelength up to 1,550nm is achievable from this interdiffused GaInNAsSb quantum well, obtained by rapid thermal annealing of the as-grown GaInAsSb sandwiched by GaInNAs layers at a temperature of 600–700°C. Strain-compensated interdiffused SbN-based quantum well on GaAs can also be achieved by conducting rapid thermal annealing of the GaInAsSb (compressive)-GaNAs (tensile) layers, leading to interdiffused GaInNAsSb quantum well with emission wavelength up to 1,500 nm. Both experimental and theoretical works are presented here, and our studies show that combination of metalorganic chemical vapor deposition and interdiffusion approach should allow realization of GaInNAsSb quantum well with emission wavelength up to 1,550 nm regime without having to grow the mixed SbN-based quinary compound directly by metalorganic chemical vapor deposition.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M. Kondow, T. Kitatani, S. Nakatsuka, M.C. Larson, K. Nakahara, Y. Yazawa, M. Okai, K. Uomi, IEEE J. Select. Topic Quantum Electro. 3, 719 (1997)

    Article  CAS  Google Scholar 

  2. J.S. Harris Jr. IEEE J. Select. Topics Quantum Electron. 6, 1145–1160 (2000)

    Article  CAS  Google Scholar 

  3. N. Tansu, J.Y. Yeh, L.J. Mawst, IOP J. Phys.: Condens. Matter Phys. 16, S3277 (2004)

    Google Scholar 

  4. D.A. Livshits, A. Yu Egorov, H. Riechert, Electron. Lett. 36, 1381 (2000)

    Article  CAS  Google Scholar 

  5. F. Hohnsdorf, J. Koch, S. Leu, W. Stolz, B. Borchert, M. Druminski Electron. Lett. 35, 571 (1999)

    Article  CAS  Google Scholar 

  6. M. Kawaguchi, T. Miyamoto, E. Gouardes, D. Schlenker, T. Kondo, F. Koyama, K. Iga, Jpn. J. Appl. Phys. 40, sL744 (2001)

    Google Scholar 

  7. T. Takeuchi, Y.L. Chang, M. Leary, A. Tandon, H.C. Luan, D.P. Bour, S.W. Corzine, R. Twist, M.R. Tan, in IEEE LEOS 2001 Post-Deadline Session, San Diego, USA, 2001

    Google Scholar 

  8. N. Tansu, L.J. Mawst, IEEE Photon. Technol. Lett. 14, 444 (2002)

    Article  ADS  Google Scholar 

  9. N. Tansu, N.J. Kirsch, L.J. Mawst, Appl. Phys. Lett. 81, 2523 (2002)

    Article  ADS  CAS  Google Scholar 

  10. N. Tansu, A. Quandt, M. Kanskar, W. Mulhearn, L.J. Mawst, Appl. Phys. Lett. 83, 18 (2003)

    Article  ADS  CAS  Google Scholar 

  11. N. Tansu, J.Y. Yeh, L.J. Mawst, Appl. Phys. Lett. 83, 2112 (2003)

    Article  ADS  CAS  Google Scholar 

  12. N. Tansu, J.Y. Yeh, L.J. Mawst, Appl. Phys. Lett. 83, 2512 (2003)

    Article  ADS  CAS  Google Scholar 

  13. N. Tansu, J.Y. Yeh, L.J. Mawst, IEEE J. Select. Topic Quantum Electron. 3, 1220 (2003)

    Article  CAS  Google Scholar 

  14. J. Wei, F. Xia, C. Li, S.R. Forrest, IEEE Photon. Technol. Lett. 14, 597 (2002)

    Article  ADS  Google Scholar 

  15. K.D. Choquette, J.F. Klem, A.J. Fischer, O. Blum, A.A. Allerman, I.J. Fritz, S.R. Kurtz, W.G. Breiland, R. Sieg, K.M. Geib, J.W. Scott, R.L. Naone, Electron. Lett. 36, 1388 (2000)

    Article  CAS  Google Scholar 

  16. W. Ha, V. Gambin, M. Wistey, S. Bank, S. Kim, J.S. Harris Jr., IEEE Photon. Technol. Lett. 14, 5 (2002)

    Article  Google Scholar 

  17. C.S. Peng, T. Jouhti, P. Laukkanen, E.M. Pavelescu, J. Konttinen, W. Li, M. Pessa, IEEE Photon. Technol. Lett. 14, 275 (2002)

    Article  ADS  Google Scholar 

  18. N.N. Ledentsov, A.R. Kovsh, A.E. Zhukov, N.A. Maleev, S.S. Mikhrin, A.P. Vasil’ev, E.S. Semenova, M.V. Maximov, Yu. M. Shernyakov, N.V. Kryzhanovskaya, V.M. Ustinov, D. Bimberg, Electron. Lett. 39, 1126 (2003)

    Article  CAS  Google Scholar 

  19. O.B. Shchekin, Appl. Phys. Lett. 80, 3277 (2002)

    Article  ADS  CAS  Google Scholar 

  20. A.R. Kovsh, N.A. Maleev, A.E. Zhukov, S.S. Mikhrin, A.R. Vasil’ev, Yu. M. Shemyakov, M.V. Maximov, D.A. Livshits, V. Ustinov, Zh. I. Alferov, N.N. Ledentsov, D. Bimberg, Electron. Lett. 38, 1104 (2002)

    Google Scholar 

  21. D.L. Huffaker, G. Park, Z. Zou, O.B. Shchekin, D.G. Deppe, Appl. Phys. Lett. 73, 2564 (2001)

    Article  ADS  Google Scholar 

  22. G.T. Liu, A. Stintz, H. Li, K.J. Malloy, L.F. Lester, Electron. Lett. 35, 1163 (1999)

    Article  CAS  Google Scholar 

  23. K. Mukai, Y. Nakata, K. Otsubo, M. Sugawara, N. Yokoyama, H. Ishikawa, IEEE Photon. Technol. Lett. 11, 1205 (1999)

    Article  ADS  Google Scholar 

  24. A. Stintz, G.T. Liu, H. Li, L.F. Lester, K.J. Malloy, IEEE Photon. Technol. Lett. 12, 591 (2000)

    Article  ADS  Google Scholar 

  25. S. Ghosh, S. Pradhan, P. Bhattacharya, Appl. Phys. Lett. 81, 3055 (2002)

    Article  ADS  CAS  Google Scholar 

  26. P. Dowd, W. Braun, D.J. Smith, C.M. Ryu, C.Z. Guo, S.L. Chen, U. Koelle, S.R. Johnson, Y.H. Zhang, Appl. Phys. Lett. 75, 1267 (1999)

    Article  ADS  CAS  Google Scholar 

  27. N. Tansu , L.J. Mawst, IEEE J. Quantum Electron. 39, 1205 (2003)

    Article  ADS  CAS  Google Scholar 

  28. I. Vurgaftman, J.R. Meyer, N. Tansu, L.J. Mawst, Appl. Phys. Lett. 83, 2742 (2003)

    Article  ADS  CAS  Google Scholar 

  29. N. Tansu, L.J. Mawst, US Patent No. 6,791,104, approved on September 14, 2004

    Google Scholar 

  30. P.D. Dapkus, International Patent Application No. PCT/US00/14332 (WO01/29943), filed on May 24, 2000

    Google Scholar 

  31. S.R. Bank, M.A. Wistey, L.L. Goddard, H.B. Yuen, V. Lordi, J.S. Harris Jr., IEEE. J. Quantum Electron. 40, 656 (2004)

    Article  ADS  CAS  Google Scholar 

  32. W. Ha, V. Gambin, S. Bank, M. Wistey, H. Yuen, S. Kim, J.S. Harris Jr., IEEE. J. Quantum Electron. 38, 1260 (2002)

    Article  ADS  CAS  Google Scholar 

  33. S.R. Bank, M.A. Wistey, L.L. Goddard, H.B. Yuen, H.P. Bae, J.S. Harris, Electron. Lett. 40, 1186 (2004)

    Article  CAS  Google Scholar 

  34. X. Yang, J.B. Heroux, L.F. Mei, W.I. Wang, Appl. Phys. Lett. 78, 4068 (2001)

    Article  ADS  CAS  Google Scholar 

  35. H. Shimizu, K. Kumada, S. Uchiyama, A. Kasukawa, Electron. Lett. 37, 28 (2001)

    Article  CAS  Google Scholar 

  36. J.Y. Yeh, N. Tansu, L.J. Mawst, Electron. Lett. 40, 739 (2004)

    Article  CAS  Google Scholar 

  37. J.G. Cederberg, M.J. Hafich, R.M. Biefield, M. Palmisiano, J. Cryst. Growth 248, 289 (2003)

    Article  ADS  CAS  Google Scholar 

  38. H.C. Kuo, H.H. Yao, Y.S. Chang, M.Y. Tsai, S.C. Wang, L.H. Laih, J. Cryst. Growth 272, 538 (2004)

    Article  ADS  CAS  Google Scholar 

  39. T. Kageyama, T. Miyamoto, M. Ohta, T. Matsuura, Y. Matsui, T. Furuhata, F. Koyama, J. Appl. Phys. 96, 44 (2004)

    Article  ADS  CAS  Google Scholar 

  40. S.W. Ryu, P.D. Dapkus, Electron. Lett. 36, 1387 (2000)

    Article  CAS  Google Scholar 

  41. V.V. Chaldyshev, N.A. Bert, G. Musikhin, A.A. Suvorova, V.V. Preobrazhenskii, M.A. Putyato, B.R. Semyagin, P. Werner, U. Gosele, Appl. Phys. Lett. 79, 1294 (2001)

    Article  ADS  CAS  Google Scholar 

  42. G. Bosker, N.A. Stolwijk, Phys. Rev. Lett. 81, 3443 (1998)

    Article  ADS  CAS  Google Scholar 

  43. M.O. Michael, G. Sridhar, S. Rubin, M.R. Jason, L.H. Archie Jr., Appl. Phys. Lett. 86, 151903–1 (2005)

    Article  CAS  Google Scholar 

  44. M.O. Manasrek (series Ed.), Optoelectronic Properties of Semiconductors and Superlattices, E. Herbert Li (Ed.), Semiconductor Quantumwell intermixing, (2000) Volume 8, Gordon and Breach Science Publishers, Singapore

    Google Scholar 

  45. I. Vurgaftman, J.R. Meyer, L.R. Ram-Mohan, J. Appl. Phys. 89, 5815 (2001)

    Article  ADS  CAS  Google Scholar 

  46. C.G. Van De Walle, Phys. Rev. B. 38, 1871 (1989)

    Article  Google Scholar 

  47. J. Piprek, Semiconductor Optoelectronic Devices: Introduction to Physics and Simulation (Academic Press, San Diego, 2003)

    Google Scholar 

  48. M.C.Y. Chan, C. Surya, P.K.A Wai, J. Appl. Phys. 90, 197 (2001)

    Article  ADS  CAS  Google Scholar 

  49. K. Shim, H. Rabitz, P. Dutta, J. Appl. Phys. 88, 7157 (2000)

    Article  ADS  CAS  Google Scholar 

  50. W.W. Chow, E.D. Jones, N.A. Modine, A.A. Allerman, S.R. Kurtz, Appl. Phys. Lett. 75, 2891 (1999)

    Article  ADS  CAS  Google Scholar 

  51. S.L. Chuang, Physics of Optoelectronic Devices. (Wiley, New York, 1995)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Arif, R.A., Tansu, N. (2008). Interdiffused GaInNAsSb Quantum Well on GaAs for 1,300–1,550 nm Diode Lasers. In: Erol, A. (eds) Dilute III-V Nitride Semiconductors and Material Systems. Materials Science, vol 105. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-74529-7_19

Download citation

Publish with us

Policies and ethics