Skip to main content

Analysis of GaInNAs-Based Devices: Lasers and Semiconductor Optical Amplifiers

  • Chapter
Dilute III-V Nitride Semiconductors and Material Systems

Part of the book series: Materials Science ((SSMATERIALS,volume 105))

An analysis of GaInNAs for optoelectronic device applications is performed. Design rules are provided for GaInNAs lasers in terms of laser parameters such as material gain, differential gain, differential refractive index, and linewidth enhancement factor. The study is extended to semiconductor optical amplifiers whose basic properties are investigated and issues related to polarization insensitivity are addressed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M. Kondow et al., Jpn. J. Appl. Phys. 35, 1273 (1996)

    Article  ADS  CAS  Google Scholar 

  2. V.M. Ustinov, A.E. Zhukov, Semicond. Sci. Technol. 15, R41 (2000)

    Article  ADS  CAS  Google Scholar 

  3. M. Hugues et al., Appl. Phys. Lett. 88, 091111 (2006)

    Article  ADS  CAS  Google Scholar 

  4. H.D. Sun et al., Appl. Phys. Lett. 85, 4013 (2004)

    Article  ADS  CAS  Google Scholar 

  5. D. Gollub et al., IEEE J. Quantum Electron. 40, 337 (2004)

    Article  ADS  CAS  Google Scholar 

  6. S. Smith et al., Electron. Lett. 40, 935 (2004)

    Article  CAS  Google Scholar 

  7. D. Gollub et al., Electron. Lett. 40, 1181 (2004)

    Article  Google Scholar 

  8. J.B. Heroux et al., Appl. Phys. Lett. 75, 2716 (1999)

    Article  ADS  CAS  Google Scholar 

  9. S. Calvez et al., Electron. Lett. 39, 100 (2003)

    Article  CAS  Google Scholar 

  10. J. Hashimoto et al., Jpn. J. Appl. Phys. 43, 3419 (2004)

    Article  ADS  CAS  Google Scholar 

  11. D. Alexandropoulos, M.J. Adams, IEEE J. Quantum Electron. 39, 647 (2003)

    Article  ADS  CAS  Google Scholar 

  12. D. Alexandropoulos et al., IEEE J. Quantum Electron. 41, 817 (2005)

    Article  ADS  CAS  Google Scholar 

  13. A. Rutz et al., Electron. Lett. 41, 321 (2005)

    Article  CAS  Google Scholar 

  14. S. Wei, A. Zunger, Phys. Rev. Lett. 76, 664 (1996)

    Article  PubMed  ADS  CAS  Google Scholar 

  15. A. Lindsay, E.P. O’Reilly, Solid State Commun. 112, 443 (1999)

    Article  ADS  CAS  Google Scholar 

  16. W. Shan et al., Phys. Rev. Lett. 82, 1221 (1999)

    Article  ADS  CAS  Google Scholar 

  17. W. Shan et al., J. Appl. Phys. 86, 2349 (1999)

    Article  ADS  CAS  Google Scholar 

  18. S.L. Chuang, Phys. Rev. B. 43, 9649 (1991)

    Article  ADS  CAS  Google Scholar 

  19. C.Y. Chao, S.L. Chuang, Phys. Rev. B 46, 4110 (1992)

    Article  ADS  Google Scholar 

  20. J.M. Luttinger, W. Kohn, Phys. Rev. 97, 869 (1955)

    Article  MATH  ADS  CAS  Google Scholar 

  21. G.E. Pikus, G.L. Bir, Sov. Phys. Solid State 1, 1502 (1960)

    MathSciNet  Google Scholar 

  22. C. Chang, S.L. Chuang, IEEE. J. Select. Top. Quantum Electron. 1, 218 (1995)

    Article  CAS  Google Scholar 

  23. D. Alexandropoulos, M.J. Adams, IEE Proc. Optoelectron. 150, 40 (2003)

    Article  CAS  Google Scholar 

  24. P.J. Klar et al., Phys. Rev. B. 64, 121203(R) (2001)

    Google Scholar 

  25. V. Lordi et al., Phys. Rev. B. 71, 125309 (2005)

    Article  ADS  CAS  Google Scholar 

  26. S. Sakai et al., Jpn. J. Appl. Phys. 32, 4413 (1993)

    Article  ADS  CAS  Google Scholar 

  27. I.A. Buyanova et al., Phys. Rev. B 63, 033303 (2001)

    Article  ADS  CAS  Google Scholar 

  28. L. Bellaiche et al., Phys. Rev. B 56, 10233 (1997)

    Article  ADS  CAS  Google Scholar 

  29. J. Hader et al., Appl. Phys. Lett. 77, 630 (2000)

    Article  ADS  CAS  Google Scholar 

  30. J. Hader et al., Appl. Phys. Lett. 76, 3685 (2000)

    Article  ADS  CAS  Google Scholar 

  31. P.J. Klar et al., Phys. Stat. Sol. (b) 223, 163 (2001)

    Article  ADS  CAS  Google Scholar 

  32. C.G. Van De Walle, Phys. Rev. B. 39, 1871 (1989)

    Article  ADS  Google Scholar 

  33. S.L. Chuang, Physics of Optolectronic Devices, (Wiley Interscience, New York, 1995)

    Google Scholar 

  34. W.W. Chow, S.W. Koch, Semiconductor Laser Fundamentals: Physics of the Gain Materials, (Springer, Berlin Heidelberg New York, 1999)

    MATH  Google Scholar 

  35. Y.N. Qiu, J.M. Rorison, Appl. Phys. Lett. 87, 081111 (2005)

    Article  ADS  CAS  Google Scholar 

  36. Y. Arakawa, A. Yariv, IEEE J. Quantum Electron. 21, 1666 (1982)

    Article  ADS  Google Scholar 

  37. G.P. Agrawal, N.K. Dutta, Long-Wavelength Semiconductor Lasers, (Van Nostrand Reinhold, New York, 1986)

    Google Scholar 

  38. W.W. Chow, J.S. Harris, Appl. Phys. Lett. 82, 1673 (2003)

    Article  ADS  CAS  Google Scholar 

  39. S. Tomic, E.P. O’Reilly, IEEE Photon. Technol. Lett. 15, 6 (2003)

    Article  ADS  Google Scholar 

  40. J.C.L. Yong et al., IEEE J. Quantum Electron. 38, 1553 (2002)

    Article  ADS  CAS  Google Scholar 

  41. M.J. Adams et al., IEEE J. Quantum Electron. 21, 1498 (1985)

    Article  ADS  Google Scholar 

  42. R. Nagarajan, J.E. Bowers, in Semiconductor Lasers I: Fundamentals, ed by E. Kapon (Academic, New York, 1999)

    Google Scholar 

  43. H. Kawaguchi, Bistabilities and Nonlinearities in Laser Diodes, (Artech House, Boston, 1994)

    Google Scholar 

  44. M.J. Adams et al., Optic. Quantum Electron. 27, 1 (1995)

    Article  CAS  Google Scholar 

  45. C.H. Henry, IEEE J. Quantum Electron. 18, 259 (1982)

    Article  ADS  Google Scholar 

  46. A. Yariv, Quantum Electronics, 3rd edn. (Wiley, New York, 1989)

    Google Scholar 

  47. M. Mullane, J.G. McInerney, IEEE Photon. Technol. Lett. 11, 776 (1999)

    Article  ADS  Google Scholar 

  48. M. Osinski, J. Buus, IEEE J. Quantum Electron. 23, 9 (1987)

    Article  ADS  Google Scholar 

  49. T. Yamanaka et al., IEEE J. Quantum Electron. 29, 1609 (1993)

    Article  ADS  CAS  Google Scholar 

  50. A. Thranhardt et al., Appl. Phys. Lett. 86, 201117 (2005)

    Article  ADS  CAS  Google Scholar 

  51. N.C. Gerhardt et al., Appl. Phys. Lett. 84, 1 (2004)

    Article  ADS  CAS  Google Scholar 

  52. D. Alexandropoulos, M.J. Adams, J. Phys. Condens. Matter. 14, 3523 (2002)

    Article  ADS  CAS  Google Scholar 

  53. S. Tomic, E.P. O’Reilly, Physica E 13, 1102 (2002)

    Article  ADS  CAS  Google Scholar 

  54. D. Alexandropoulos, M.J. Adams, IEE Proc. Optoelectron. 150, 105 (2003)

    Article  CAS  Google Scholar 

  55. R. Potter et al., Superlattices and Microstructures 29, 169 (2001)

    Article  ADS  CAS  Google Scholar 

  56. M.O. Fischer et al., IEEE J. Select. Topics Quantum Electron. 7, 149 (1997)

    Article  Google Scholar 

  57. J.S. Harris, Semicond. Sci. Technol. 17, 880 (2002)

    Article  ADS  CAS  Google Scholar 

  58. W. Streifer et al., Appl. Opt. 18, 3547 (1979)

    Article  ADS  CAS  Google Scholar 

  59. H. Ghafouri-Shiraz, Fundamentals of Laser Diode Amplifiers, (Wiley, New York, 1996)

    Google Scholar 

  60. Y. Yamamoto et al., IEEE J. Quantum Electron. 19, 47 (1983)

    Article  ADS  Google Scholar 

  61. G.P. Agrawal, Fiber-Optic Communication Systems, (Wiley Interscience, New York 1997)

    Google Scholar 

  62. E.S. Semenova et al., Nanotechnology 15, S283 (2004)

    Article  ADS  CAS  Google Scholar 

  63. A.E. Zhukov et al., Semiconductors 37, 1119 (2003)

    Article  ADS  CAS  Google Scholar 

  64. A. Bosacchi et al., J. Cryst. Growth, 175, 1009 (1997)

    Article  ADS  Google Scholar 

  65. A.E. Kelly et al., Electron. Lett. 33, 536 (1997)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Alexandropoulos, D., Adams, M.J., Rorison, J. (2008). Analysis of GaInNAs-Based Devices: Lasers and Semiconductor Optical Amplifiers. In: Erol, A. (eds) Dilute III-V Nitride Semiconductors and Material Systems. Materials Science, vol 105. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-74529-7_17

Download citation

Publish with us

Policies and ethics