Skip to main content

Quadratic Optimal Functional Quantization of Stochastic Processes and Numerical Applications

  • Conference paper
Book cover Monte Carlo and Quasi-Monte Carlo Methods 2006

Summary

In this paper, we present an overview of the recent developments of functional quantization of stochastic processes, with an emphasis on the quadratic case. Functional quantization is a way to approximate a process, viewed as a Hilbert -valued random variable, using a nearest neighbour projection on a finite codebook. A special emphasis is made on the computational aspects and the numerical applications, in particular the pricing of some path-dependent European options.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. E.F. Abaya and G.L. Wise. On the existence of optimal quantizers. IEEE Trans. Inform. Theory, 28, 937-940, 1982.

    Article  MATH  MathSciNet  Google Scholar 

  2. E.F. Abaya and G.L. Wise. Some remarks on the existence of optimal quantizers. Statistics and Probab. Letters, 2, 349-351, 1984.

    Article  MATH  Google Scholar 

  3. N. Bouleau and D. Lépingle. Numerical methods for stochastic processes, Wiley Series in Probability and Mathematical Statistics: Applied Probability and Statistics. A Wiley-Interscience Publication. John Wiley &Sons, Inc., New York, 359 pp. ISBN: 0-471-54641-0, 1994.

    MATH  Google Scholar 

  4. A. Benveniste, M. Métivier, and P. Priouret. Adaptive algorithms and stochastic approximations, Translated from the French by Stephen S. Wilson. Applications of Mathematics 22, Springer-Verlag, Berlin, 365 pp, 1990.

    Google Scholar 

  5. J.A. Bucklew and G.L. Wise. Multidimensional asymptotic quantization theory with rth power distortion. IEEE Trans. Inform. Theory, 28(2), 239-247, 1982.

    Article  MATH  MathSciNet  Google Scholar 

  6. J.A. Cuesta-Albertos and C. Matrán. The strong law of large numbers for k-means and best possible nets of Banach valued random variables, Probab. Theory Rel. Fields 78, 523-534, 1988.

    Article  Google Scholar 

  7. P. Cohort. A geometric method for uniqueness of locally optimal quan-tizer. Pre-print LPMA-464 and Ph.D. Thesis, Sur quelques problèmes de quantification, 2000, Univ. Paris 6, 1998.

    Google Scholar 

  8. S. Dereich. The coding complexity of diffusion processes under supremum norm distortion, pre-print, 2005.

    Google Scholar 

  9. S. Dereich. The coding complexity of diffusion processes under Lp [0, 1]-norm distortion, pre-print, 2005.

    Google Scholar 

  10. S. Dereich, F. Fehringer, A. Matoussi, and M. Scheutzow. On the link between small ball probabilities and the quantization problem for Gaus- sian measures on Banach spaces, J. Theoretical Probab., 16, pp. 249-265, 2003.

    Article  MATH  MathSciNet  Google Scholar 

  11. S. Delattre, J.-C. Fort, and G. Pagès. Local distortion and µ-mass of the cells of one dimensional asymptotically optimal quantizers, Communica-tions in Statistics, 33(5), 1087-1118, 2004.

    Article  MATH  Google Scholar 

  12. H. Doss. Liens entre équations différentielles stochastiques et ordinaires, Ann. I.H.P., section B, 13(2), 99-125, 1977.

    MATH  MathSciNet  Google Scholar 

  13. S. Dereich and M. Scheutzow. High resolution quantization and entropy coding for fractional Brownian motions, Electron. J. Probab., 11, 700-722, 2006.

    MathSciNet  Google Scholar 

  14. P.E. Fleischer. Sufficient conditions for achieving minimum distortion in a quantizer. IEEE Int. Conv. Rec., part I, 104-111, 1964.

    Google Scholar 

  15. J.-C. Fort and G. Pagès. Asymptotics of optimal quantizers for some scalar distributions, Journal of Computational and Applied Mathematics, 146,253-275, 2002, 2004.

    Article  Google Scholar 

  16. A. Gersho and R.M. Gray. Vector Quantization and Signal Compression. Kluwer, Boston, 1992.

    MATH  Google Scholar 

  17. S. Graf and H. Luschgy. Foundations of Quantization for Probability Distributions. Lect. Notes in Math. 1730, Springer, Berlin, 230 p, 2000.

    MATH  Google Scholar 

  18. S. Graf and H. Luschgy. The point density measure in the quantization of self-similar probabilities. Math. Proc. Cambridge Phil. Soc., 138, 513-531, 2005.

    Article  MATH  MathSciNet  Google Scholar 

  19. S. Graf, H. Luschgy, and G. Pagès. Functional quantization and small ball probabilities for Gaussian processes, J. Theoret. Probab., 16(4), 1047-1062, 2003.

    Article  MATH  MathSciNet  Google Scholar 

  20. S. Graf, H. Luschgy, and G. Pagès. Distortion mismatch in the quantiza-tion of probability measures, to appear in ESAIM P&S, 2006.

    Google Scholar 

  21. S. Graf, H. Luschgy, and G. Pagès. Optimal quantizers for Radon random vectors in a Banach space, J. of Approximation Theory, 144, 27-53, 2007.

    Article  MATH  Google Scholar 

  22. S.L. Heston. A closed-form solution for options with stochastic volatility with applications to bond and currency options, The review of Financial Studies, 6(2), 327-343, 1993.

    Article  Google Scholar 

  23. J.C. Kieffer. Exponential rate of convergence for Lloyd's Method I, IEEE Trans. Inform. Theory, 28(2), 205-210, 1982.

    Article  MATH  MathSciNet  Google Scholar 

  24. J.C. Kieffer. Uniqueness of locally optimal quantizer for log-concave density and convex error weighting functions, IEEE Trans. Inform. Theory, 29, 42-47, 1983.

    Article  MATH  MathSciNet  Google Scholar 

  25. H.J. Kushner and G.G. Yin. Stochastic approximation and recursive algorithms and applications. Second edition. Applications of Mathematics 35. Stochastic Modelling and Applied Probability. Springer-Verlag, New York, 474 p, 2003.

    MATH  Google Scholar 

  26. A. Lejay. An introduction to rough paths, Séminaire de Probabilités XXXVII, Lecture Notes in Mathematics 1832, Stringer, Berlin, 1-59, 2003.

    Google Scholar 

  27. H. Luschgy and G. Pagès. Functional quantization of Gaussian processes, Journal of Functional Analysis, 196(2), 486-531, 2002.

    Article  MATH  MathSciNet  Google Scholar 

  28. H. Luschgy and G. Pagès. Sharp asymptotics of the functional quantization problem for Gaussian processes, The Annals of Probability, 32(2), 1574-1599, 2004.

    Article  MATH  MathSciNet  Google Scholar 

  29. H. Luschgy and G. Pagès. High-resolution product quantization for Gaussian processes under sup-norm distortion, pre-pub LPMA-1029, forthcoming in Bernoulli, 2005.

    Google Scholar 

  30. H. Luschgy and G. Pagès. Functional Quantization Rate and mean regularity of processes with an application to Lévy Processes, pre-print LPMA-1048, 2006.

    Google Scholar 

  31. H. Luschgy and G. Pagès. Functional quantization of a class of Brownian diffusions: A constructive approach, Stochastic Processes and Applications, 116, 310-336, 2006.

    Article  MATH  MathSciNet  Google Scholar 

  32. H. Luschgy and G. Pagès. Expansion of Gaussian processes and Hilbert frames, technical report, 2007.

    Google Scholar 

  33. D. Lamberton and G. Pagès. On the critical points of the 1-dimensional Competitive Learning Vector Quantization Algorithm. Proceedings of the ESANN’96, (ed. M. Verleysen), Editions D Facto, Bruxelles, 97-106, 1996.

    Google Scholar 

  34. H. Luschgy, G. Pagès, and B. Wilbertz. Asymptotically optimal quantization schemes for Gaussian processes, in progress, 2007.

    Google Scholar 

  35. B. Lapeyre, K. Sab, and G. Pagès. Sequences with low discrepancy. Generalization and application to Robbins-Monro algorithm, Statistics, 21(2),251-272, 1990.

    Article  MATH  MathSciNet  Google Scholar 

  36. M. Mrad and S. Ben Hamida. Optimal Quantization: Evolutionary Algorithm vs Stochastic Gradient, Proceedings of the 9th Joint Conference on Information Sciences, 2006.

    Google Scholar 

  37. D.J. Newman. The Hexagon Theorem. IEEE Trans. Inform. Theory, 28, 137-138, 1982.

    Article  MATH  MathSciNet  Google Scholar 

  38. H. Niederreiter. Random Number Generation and Quasi-Monte Carlo Methods, CBMS-NSF regional conference series in Applied mathematics, SIAM, Philadelphia, 1992.

    Google Scholar 

  39. G. Pagès. Functional quantization: a first approach, pre-print CMP12-04-00, Univ. Paris 12, 2000.

    Google Scholar 

  40. G. Pagès. Voronoi tessellation, space quantization algorithm and numerical integration. Proceedings of the ESANN’93, M. Verleysen Ed., Editions D Facto, Bruxelles, 221-228, 1993.

    Google Scholar 

  41. G. Pagès. A space vector quantization method for numerical integration, J. Computational and Applied Mathematics, 89, 1-38, 1997.

    Article  Google Scholar 

  42. K. Pärna. On the existence and weak convergence of k-centers in Banach spaces, Tartu Ülikooli Toimetised, 893, 17-287, 1990.

    Google Scholar 

  43. D. Pollard. Quantization and the method of k-means. IEEE Trans. Inform. Theory, 28(2), 199-205, 1982.

    Article  MATH  MathSciNet  Google Scholar 

  44. G. Pagès and J. Printems. Optimal quadratic quantization for numerics: the Gaussian case, Monte Carlo Methods and Appl., 9(2), 135-165, 2003.

    Article  MATH  MathSciNet  Google Scholar 

  45. G. Pagès and J. Printems. Website devoted to vector and functional optimal quantization: www.quantize.maths-fi.com, 2005.

  46. G. Pagès and J. Printems. Functional quantization for numerics with an application to option pricing, Monte Carlo Methods and Appl., 11(4), 407-446, 2005.

    Article  MATH  MathSciNet  Google Scholar 

  47. G. Pagès, H. Pham, and J. Printems. Optimal quantization methods and applications to numerical methods in finance. Handbook of Computational and Numerical Methods in Finance, S.T. Rachev ed., Birkhäuser, Boston, 429 p, 2003.

    Google Scholar 

  48. P.D. Proinov. Discrepancy and integration of continuous functions, J. of Approx. Theory, 52, 121-131, 1988.

    Article  MATH  MathSciNet  Google Scholar 

  49. G. Pagès and A. Sellami. Convergence of multi-dimensional quantized SDE's. In progress, 2007.

    Google Scholar 

  50. G. Pagès and Y.J. Xiao. Sequences with low discrepancy and pseudorandom numbers: theoretical results and numerical tests, J. of Statist. Comput. Simul., 56, 163-188, 1988.

    Article  Google Scholar 

  51. K.F. Roth. On irregularities of distributions, Mathematika, 1, 73-79, 1954.

    Article  MATH  MathSciNet  Google Scholar 

  52. D. Revuz and M. Yor. Continuous martingales and Brownian motion, Third edition. Grundlehren der Mathematischen Wissenschaften [Fun- damental Principles of Mathematical Sciences], 293, Springer-Verlag, Berlin, 1999, 602 p, 1999.

    MATH  Google Scholar 

  53. T. Tarpey and K.K.J. Kinateder. Clustering functional data, J. Classification, 20, 93-114, 2003.

    Article  MATH  MathSciNet  Google Scholar 

  54. T. Tarpey, E. Petkova, and R.T. Ogden. Profiling Placebo responders by self-consistent partitioning of functional data, J. Amer. Statist. Association, 98, 850-858, 2003.

    Article  MathSciNet  Google Scholar 

  55. A.V. Trushkin. Sufficient conditions for uniqueness of a locally optimal quantizer for a class of convex error weighting functions, IEEE Trans. Inform. Theory, 28(2), 187-198, 1982.

    Article  MATH  MathSciNet  Google Scholar 

  56. B. Wilbertz. Computational aspects of functional quantization for Gaussian measures and applications, diploma thesis, Univ. Trier, 2005.

    Google Scholar 

  57. P.L. Zador. Development and evaluation of procedures for quantizing multivariate distributions. Ph.D. dissertation, Stanford Univ, 1963.

    Google Scholar 

  58. P.L. Zador. Asymptotic quantization error of continuous signals and the quantization dimension. IEEE Trans. Inform. Theory, 28(2), 139-149, 1982.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Pagès, G. (2008). Quadratic Optimal Functional Quantization of Stochastic Processes and Numerical Applications. In: Keller, A., Heinrich, S., Niederreiter, H. (eds) Monte Carlo and Quasi-Monte Carlo Methods 2006. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-74496-2_6

Download citation

Publish with us

Policies and ethics