Skip to main content

MCQMC Methods for Multivariate Statistical Distributions

  • Conference paper
  • 2377 Accesses

Summary

A review and comparison is presented for the use of Monte Carlo and Quasi-Monte Carlo methods for multivariate Normal and multivariate t distribution computation problems. Spherical-radial transformations, and separation-of-variables transformations for these problems are considered. The use of various Monte Carlo methods, Quasi-Monte Carlo methods and randomized Quasi-Monte Carlo methods are discussed for the different problem formulations and test results are summarized.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M. Beckers and A. Haegemans. ‘Comparison of Numerical Integration Techniques for Multivariate Normal Integrals’, Computer Science Depart ment Preprint, Catholic University of Leuven, Belgium, 1992.

    Google Scholar 

  2. E. A. Cornish. ‘The Multivariate t-Distribution Associated with a Set of Normal Sample Deviates’, Australian Journal of Physics 7, pp. 531-542, 1954.

    MATH  MathSciNet  Google Scholar 

  3. I. Deák. ‘Three Digit Accurate Multiple Normal Probabilities’ Numer. Math. 35, pp. 369-380, 1980.

    Article  MATH  MathSciNet  Google Scholar 

  4. I. Deák. ‘Computing Probabilities of Rectangles in Case of Multinormal Distribution’ J. Statist. Comput. Simul. 26, pp. 101-114, 1986.

    Article  MATH  Google Scholar 

  5. I. Deák. Random Number Generation and Simulation, Akadémiai Kiadó, Budapest, Chapter 7, 1990.

    Google Scholar 

  6. L. Devroye. ‘Non-Uniform Random Variate Generation’ Springer-Verlag, Berlin, 1986.

    MATH  Google Scholar 

  7. K.-T. Fang and Y. Wang. Number-Theoretic Methods in Statistics, Chap-man and Hall, London, pp. 167-170, 1994.

    Google Scholar 

  8. H. I. Gassmann, I. Deák, and T. Szántai. ‘Computing Multivariate Normal Probabilities: a New Look’, J. Comp. Graph. Stat. 11, pp. 920-949, 2002.

    Google Scholar 

  9. A. Genz. ‘Numerical Computation of the Multivariate Normal Probabilities’, J. Comput. Graph. Stat. 1, pp. 141-150, 1992.

    Article  Google Scholar 

  10. A. Genz. ‘A Comparison of Methods for Numerical Computation of Multivariate Normal Probabilities’, Computing Science and Statistics 25, pp. 400-405, 1993.

    Google Scholar 

  11. A. Genz and F. Bretz. Numerical Computation of Multivariate t Proba-bilities with Application to Power Calculation of Multiple Contrasts, J. Stat. Comp. Simul. 63, pp. 361-378, 1999.

    MATH  MathSciNet  Google Scholar 

  12. A. Genz and F. Bretz. ‘Numerical Computation of Critical Values for Multiple Comparison Problems’, in Proceedings of the Statistical Com-puting Section, American Statistical Association, Alexandria, VA, pp. 84-87, 2000.

    Google Scholar 

  13. A. Genz and F. Bretz. ‘Critical Point and Power Calculations for the Studentised Range Test’, J. Stat. Comp. Simul. 71, pp. 85-97, 2001.

    Article  MATH  MathSciNet  Google Scholar 

  14. A. Genz and F. Bretz. ‘Comparison of Methods for the Computation of Multivariate t Probabilities’, J. Comp. Graph. Stat. 11, pp. 950-971.

    Google Scholar 

  15. A. Genz and K. S. Kwong. ‘Numerical Evaluation of Singular Multivariate Normal Distributions’, J. Stat. Comp. Simul. 68, pp. 1-21, 1999.

    Article  MathSciNet  Google Scholar 

  16. J. Geweke. ‘Efficient Simulation from the Multivariate Normal and Student-t Distributions Subject to Linear Constraints’, Computing Sci ence and Statistics 23, pp. 571-578, 1991.

    Google Scholar 

  17. G. J. Gibson, C. A. Glasbey, and D. A. Elston. ‘Monte-Carlo Evaluation of Multivariate Normal Integrals and Sensitivity to Variate Ordering’, in Proceedings of the Third International Conference in Numerical Methods and Applications, World Scientific, Singapore, pp. 120-126, 1994.

    Google Scholar 

  18. V. Hajivassiliou. ‘Simulating Normal Rectangle Probabilities and Their Derivatives: The effects of Vectorization’, The International Journal of Supercomputer Applications 7, pp. 231-253, 1993.

    Article  Google Scholar 

  19. V. Hajivassiliou, D. McFadden, and O. Rudd. ‘Simulation of Multivariate Normal Rectangle Probabilities and Their Derivatives: Theoretical and Computational Results’, Journal of Econometrics, 72, pp. 85-134, 1996

    Article  MATH  MathSciNet  Google Scholar 

  20. F. J. Hickernell and H. S. Hong. ‘Computing Multivariate Normal Proba-bilities Using Rank-1 Lattice Sequences’, in Proceedings of the Workshop on Scientific Computing (Hong Kong), (G. H. Golub, S. H. Lui, F. T. Luk, and R. J. Plemmons, eds.), Springer-Verlag, Singapore, pp. 209-215, 1997.

    Google Scholar 

  21. F. J. Hickernell, H. S. Hong, P. L’Ecuyer, and C. Lemieux. ‘Extensible Lattice Sequences for QMC Quadrature’ SIAM Journal of Scientific and Statistical Computing 22, pp. 1117-1138, 2000.

    Article  MATH  MathSciNet  Google Scholar 

  22. C. Lemieux and P. L’Ecuyer. ‘A Comparison of Monte Carlo, Lattice Rules and Other Low-Discrepancy Point Sets’, in Monte Carlo and Quasi-Monte Carlo methods 1998, (H. Niederreiter and J. Spanier Eds.), Springer, Berlin, pp. 326-340, 2000.

    Google Scholar 

  23. D. Nuyens and R. Cools. ‘Fast Component-By-Component Construction of Rank-1 Lattice Rules in Shift-Invariant Reproducing Kernel Hilbert Spaces’ Math. Comp. 75, pp. 903-920, 2006.

    Article  MATH  MathSciNet  Google Scholar 

  24. Z. Sandor and P. Andras. ‘Alternative Sampling Methods for Estimating Multivariate Normal Probabilities’, Journal of Econometrics, 120, pp. 207-234, 2004.

    Article  MathSciNet  Google Scholar 

  25. M. Schervish. ‘Multivariate Normal Probabilities with Error Bound’, Applied Statistics 33, pp. 81-87, 1984.

    Article  MATH  Google Scholar 

  26. I. H. Sloan. ‘QMC Integration - Beating Intractability by Weighting the Co-ordinate Directions’ in Monte Carlo and Quasi-Monte Carlo Methods 2000 (K. T. Fang, F. J. Hickernell, and H. Niederreiter, eds.), Springer-Verlag, Berlin, pp. 103-123, 2002.

    Google Scholar 

  27. I. H. Sloan and S. Joe. Lattice Methods for Multiple Integration, Oxford University Press, Oxford, 1994.

    MATH  Google Scholar 

  28. P. N. Somerville. ‘Multiple Testing and Simultaneous Confidence Intervals: Calculation of Constants’ Comp. Stat. & Data Analysis 25, pp. 217-223, 1997.

    Article  MATH  Google Scholar 

  29. P. N. Somerville. ‘Numerical Computation of Multivariate Normal and Multivariate-t Probabilities Over Convex Regions’, J. Comput. Graph. Stat. 7, pp. 529-545, 1998.

    Article  MathSciNet  Google Scholar 

  30. P. N. Somerville. ‘A Fortran 90 Program for Evaluation of Multivariate Normal and Multivariate t Integral over Convex Regions’, Journal of Statistical Software 3, 1998, available at http://www.jstatsoft.org.

  31. P. N. Somerville. ‘Critical Values for Multiple Testing and Comparisons: One Step and Step Down Procedures’ J. Stat. Plan. & Inf., 82, pp. 129-138,1999.

    Article  MATH  MathSciNet  Google Scholar 

  32. P. N. Somerville. ‘Numerical Computation of Multivariate Normal and Multivariate t Probabilities over Ellipsoidal regions. Journal of Statistical Software 6, 2001, available at http://www.jstatsoft.org.

  33. G. W. Stewart. ‘The Efficient Generation of Random Orthogonal Matrices with An Application to Condition Estimation’, SIAM J. Numer. Anal. 17, pp. 403-409, 1980.

    Article  MATH  MathSciNet  Google Scholar 

  34. Y. L. Tong. The Multivariate Normal Distribution, Springer-Verlag, New York, 1990.

    MATH  Google Scholar 

  35. P. M. Vijverberg. ‘Monte Carlo Evaluation of Multivariate Student’s t Probabilities’, Economics Letters 52, pp. 1-6, 1996.

    Article  MATH  MathSciNet  Google Scholar 

  36. W. P. M. Vijverberg. ‘Monte Carlo Evaluation of Multivariate Normal Probabilities’,Journal of Econometrics 76, pp. 281-307, 1997.

    Article  MATH  MathSciNet  Google Scholar 

  37. W. P. M. Vijverberg. ‘Rectangular and Wedge-shaped Multivariate Nor-mal Probabilities’, Economics Letters 68, pp. 13-20, 2000.

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Genz, A. (2008). MCQMC Methods for Multivariate Statistical Distributions. In: Keller, A., Heinrich, S., Niederreiter, H. (eds) Monte Carlo and Quasi-Monte Carlo Methods 2006. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-74496-2_3

Download citation

Publish with us

Policies and ethics