Skip to main content

Using State Space Differential Geometry for Nonlinear Blind Source Separation

  • Conference paper
Independent Component Analysis and Signal Separation (ICA 2007)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 4666))

Abstract

Given a time series of multicomponent measurements of an evolving stimulus, nonlinear blind source separation (BSS) usually seeks to find a “source” time series, comprised of statistically independent combinations of the measured components. In this paper, we seek a source time series that has a phase-space density function equal to the product of density functions of individual components. In an earlier paper, it was shown that the phase space density function induces a Riemannian geometry on the system’s state space, with the metric equal to the local velocity correlation matrix of the data. From this geometric perspective, the vanishing of the curvature tensor is a necessary condition for BSS. Therefore, if this data-derived quantity is non-vanishing, the observations are not separable. However, if the curvature tensor is zero, there is only one possible set of source variables (up to transformations that do not affect separability), and it is possible to compute these explicitly and determine if they do separate the phase space density function. A longer version of this paper describes a more general method that performs nonlinear multidimensional BSS or independent subspace separation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Hyvärinen, A., Karhunen, J., Oja, E.: Independent Component Analysis. Wiley, New York (2001)

    Google Scholar 

  2. Jutten, C., Karhunen, J.: Advances in nonlinear blind source separation. In: Proceedings of the 4th International Symposium on Independent Component Analysis and Blind Signal Separation (ICA 2003), Nara, Japan (April 2003)

    Google Scholar 

  3. Hyvärinen, A., Pajunen, P.: Nonlinear independent component analysis: existence and uniqueness results. Neural Networks 12, 429–439 (1999)

    Article  Google Scholar 

  4. Sears, F.W.: Thermodynamics, the Kinetic Theory of Gases, and Statistical Mechanics, 2nd edn. Addison-Wesley, Reading, MA (1959)

    Google Scholar 

  5. Levin, D.N.: Using state space differential geometry for nonlinear blind source separation (2006), http://arxiv.org/abs/cs/0612096

  6. Levin, D.N.: Channel-independent and sensor-independent stimulus representations. J. Applied Physics 98, 104701 (2005), http://www.geocities.com/dlevin2001/

    Google Scholar 

  7. Cardoso, J-F.: Multidimensional independent component analysis. In: Proc. 1998 IEEE Int. Conf. on Acoustics, Speech and Signal Processing (ICASSP 1998), Seattle, pp. 1941–1944. IEEE Computer Society Press, Los Alamitos (1998)

    Google Scholar 

  8. Bingham, E., Hyvärinen, A.: A fast fixed-point algorithm for independent component analysis of complex-valued signals. Int. J. of Neural Systems 10, 1–8 (2000)

    Google Scholar 

  9. Nishimori, Y., Akaho, S., Plumbley, M.D.: Riemannian optimization method on the flag manifold for independent subspace analysis. In: Rosca, J., Erdogmus, D., Príncipe, J.C., Haykin, S. (eds.) ICA 2006. LNCS, vol. 3889, pp. 295–302. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  10. Lagrange, S., Jaulin, L., Vigneron, V., Jutten, C.: Analytic solution of the blind source separation problem using derivatives. In: Puntonet, C.G., Prieto, A.G. (eds.) ICA 2004. LNCS, vol. 3195, pp. 81–88. Springer, Heidelberg (2004)

    Google Scholar 

  11. Haykin, S.: Neural Networks - A Comprehensive Foundation, 2nd edn. Prentice Hall, New York (1998)

    Google Scholar 

  12. Yang, H., Amari, S.I., Cichocki, A.: Information-theoretic approach to blind separation of sources in non-linear mixture. Signal Processing 64, 291–300 (1998)

    Article  MATH  Google Scholar 

  13. Taleb, A., Jutten, C.: Source separation in post nonlinear mixtures. IEEE Trans. on Signal Processing 47, 2807–2820 (1999)

    Article  Google Scholar 

  14. Amari, S.: Natural gradient works efficiently in learning. Neural Computation 10, 251–276 (1998)

    Article  Google Scholar 

  15. Weinberg, S.: Gravitation and Cosmology - Principles and Applications of the General Theory of Relativity. Wiley, New York (1972)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Mike E. Davies Christopher J. James Samer A. Abdallah Mark D Plumbley

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Levin, D.N. (2007). Using State Space Differential Geometry for Nonlinear Blind Source Separation. In: Davies, M.E., James, C.J., Abdallah, S.A., Plumbley, M.D. (eds) Independent Component Analysis and Signal Separation. ICA 2007. Lecture Notes in Computer Science, vol 4666. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-74494-8_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-74494-8_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-74493-1

  • Online ISBN: 978-3-540-74494-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics