Skip to main content

Image Compression by Redundancy Reduction

  • Conference paper
Independent Component Analysis and Signal Separation (ICA 2007)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 4666))

Abstract

Image compression is achieved by reducing redundancy between neighboring pixels but preserving features such as edges and contours of the original image. Deterministic and statistical models are usually employed to reduce redundancy. Compression methods that use statistics have heavily been influenced by neuroscience research. In this work, we propose an image compression system based on the efficient coding concept derived from neural information processing models. The system performance is compared with principal component analysis (PCA) and the discrete cosine transform (DCT) at several compression ratios (CR). Evaluation through both visual inspection and objective measurements showed that the proposed system is more robust to distortions such as ringing and block artifacts than PCA and DCT.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Kortamnl, C.M.: Redundancy Reduction-A Practical Method of Data Compression. Proc. of the IEEE 55(3), 223–226 (1967)

    Google Scholar 

  2. Barros, A.K., Chichocki, A.: Neural Coding by Redundancy Reduction and Correlation. In: Proc. of the VII Brazilian Symposium on Neural Networks (SBRN) (IEEE) (2002)

    Google Scholar 

  3. Ahmed, N., Natarajan, T., Rao, K.R.: Discrete Cosine Transform. IEEE Trans. Computers, 90–93 (1974)

    Google Scholar 

  4. Wallace, G.K.: The JPEG still-picture compression standard. Commun. ACM 34, 30–44 (1991)

    Article  Google Scholar 

  5. Gibbs, J.W.: Fourier Series. Nature, 59 (1898)

    Google Scholar 

  6. Coudoux, F.X., Gazalet, M.G., Corlay, P., Rouvaen, J.M.: A Perceptual Approach to the Reduction of Blocking Effect in DCT-Coded Images. Journal of Visual Com- munication and Image Representation 8(4), 327–337 (1997)

    Article  Google Scholar 

  7. Simoncelli, E.P., Olshausen, B.A.: Natural Image statistics and Neural Representation. Annu. Rev. Neurosci., 1193–216 (2001)

    Google Scholar 

  8. Dony, R.D., Haykin, S.: Proc. of IEEE Neural Network Approaches to Image Compression, vol. 83(2), pp. 288–303 (1995)

    Google Scholar 

  9. Ferreira, A.J, Figueiredo, M.A.T.: On the use of independent component analysis for image compression. Signal Processing: Image Communication 21, 378–389 (2006)

    Article  Google Scholar 

  10. Guilhon, D., Barros, A.K.: ECG Compression by Efficient Coding. In: ICA (submitted, 2007)

    Google Scholar 

  11. Hyvärinen, A., Karhunen, J., Oja, E.: Independent Component Analysis. John Wiley and Sons, New York (2001)

    Google Scholar 

  12. Mallat, S., Zhang, Z.: Matching pursuit with time-frequency dictionaries. IEEE Transactions on Signal Processing 41(12), 3397–3415 (1993)

    Article  MATH  Google Scholar 

  13. Martinez, A.M., Benavente, R.: The AR Face Database. CVC Technical Report, vol. 24 (1998)

    Google Scholar 

  14. Lloyd, S.P.: Least Squares Quantization in PCM. IEEE Transactions on Information Theory IT-28, 129–137 (1982)

    Article  MathSciNet  Google Scholar 

  15. Huffman, D.A.: A method for the construction of minimum-redundancy codes. In: Proceedings of the I.R.E. pp. 1098–1102 (1952)

    Google Scholar 

  16. Miyahara, M., Kotani, K., Algazi, V.: Objective picture quality scale (pqs) for image coding. IEEE Trans. Commun 46, 1215–1226 (1998)

    Article  Google Scholar 

  17. Mannos, J.L., Sakrison, D.J.: The Effects of a Visual Fidelity Criterion on the Encoding of Images. IEEE Trans. on Information Theory it-20, 525–536 (1974)

    Article  Google Scholar 

  18. Ziou, D., Tabbone, S.: Edge Detection Techniques - An Overview. International Journal of Pattern Recognition and Image Analysis 8, 537–559 (1998)

    Google Scholar 

  19. Strijm, J., Cosmanb, P.C.: Medical image compression with lossless regions of interest. Signal Processing 59, 155–171 (1991)

    Google Scholar 

Download references

Authors

Editor information

Mike E. Davies Christopher J. James Samer A. Abdallah Mark D Plumbley

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Sousa, C.M., Cavalcante, A.B., Guilhon, D., Barros, A.K. (2007). Image Compression by Redundancy Reduction. In: Davies, M.E., James, C.J., Abdallah, S.A., Plumbley, M.D. (eds) Independent Component Analysis and Signal Separation. ICA 2007. Lecture Notes in Computer Science, vol 4666. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-74494-8_53

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-74494-8_53

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-74493-1

  • Online ISBN: 978-3-540-74494-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics