An Algorithm for Rendering Generalized Depth of Field Effects Based on Simulated Heat Diffusion

  • Todd J. Kosloff
  • Brian A. Barsky
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4707)

Abstract

Depth of field refers to the swath through a 3D scene that is imaged in acceptable focus through an optics system, such as a camera lens. Control over depth of field is an important artistic tool that can be used to emphasize the subject of a photograph. In a real camera, the control over depth of field is limited by the nature of the image formation process and by physical constraints. The depth of field effect has been simulated in computer graphics, but with the same limited control as found in real camera lenses. In this paper, we use diffusion in a non-homogeneous medium to generalize depth of field in computer graphics by enabling the user to independently specify the degree of blur at each point in three-dimensional space. Generalized depth of field provides a novel tool to emphasize an area of interest within a 3D scene, to pick objects out of a crowd, and to render a busy, complex picture more understandable by focusing only on relevant details that may be scattered throughout the scene. Our algorithm operates by blurring a sequence of nonplanar layers that form the scene. Choosing a suitable blur algorithm for the layers is critical; thus, we develop appropriate blur semantics such that the blur algorithm will properly generalize depth of field. We found that diffusion in a non-homogeneous medium is the process that best suits these semantics.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Erickson, B., Romano, F.: Professional Digital Photography. Prentice-Hall, Englewood Cliffs (1999)Google Scholar
  2. 2.
    London, B., Upton, J., Kobre, K., Brill, B.: Photography, 7th edn. Prentice-Hall, Englewood Cliffs (2002)Google Scholar
  3. 3.
    Stroebel, L., Compton, J., Current, I.: Basic Photographic Materials and Processes, 2nd edn. Focal Press (2000)Google Scholar
  4. 4.
    Barsky, B.A., Pasztor, E.: Rendering skewed plane of sharp focus and associated depth of field. In: SIGGRAPH 2004 Tech Sketch, ACM Press, New York (2004)Google Scholar
  5. 5.
    Merklinger, H.M.: Focusing the View Camera (1993) ISBN 0-9695025-2-4Google Scholar
  6. 6.
    Merklinger, H.M.: View camera focus and depth of field, parts i and ii. View Camer magazine, July/August 1996, pp. 55-57 and September/October, pp. 56–58 (1996)Google Scholar
  7. 7.
    Simmons, S.: Using the View Camera, Amphoto Revised edn., Watson-Guptill Publications (1992)Google Scholar
  8. 8.
    Stone, J.: User’s Guide to the View Camera, 3rd edn. Prentice-Hall, Englewood Cliffs (2004)Google Scholar
  9. 9.
    Stroebel, L.: View Camera Technique, 7th edn. Focal Press (1999)Google Scholar
  10. 10.
    Porter, T., Duff, T.: Compositing digital images. In: ACM SIGGRAPH 1984 Conference Proceedings, pp. 253–259 (1984)Google Scholar
  11. 11.
    Jenkins, F.A., White, H.E.: Fundamentals of Optics. McGraw-Hill, New York (1976)Google Scholar
  12. 12.
    Barsky, B.A., Horn, D.R., Klein, S.A., Pang, J.A., Yu, M.: Camera models and optical systems used in computer graphics: Part i, object based techniques. In: Kumar, V., Gavrilova, M., Tan, C.J.K., L’Ecuyer, P. (eds.) ICCSA 2003. LNCS, vol. 2667, pp. 246–255. Springer, Heidelberg (2003)Google Scholar
  13. 13.
    Potmesil, M., Chakravarty, I.: Synthetic image generation with a lens and aperture camera model. ACM Transactions on Graphics 1(2), 85–108 (1982)CrossRefGoogle Scholar
  14. 14.
    Rokita, P.: Generating depth of-field effects in virtual reality applications. IEEE Computer Graphics and Applications 16(2), 18–21 (1996)CrossRefGoogle Scholar
  15. 15.
    Cook, R.L., Porter, T., Carpenter, L.: Distributed ray tracing. In: ACM SIGGRAPH 1984 Conference Proceedings, pp. 137–145. ACM Press, New York (1984)Google Scholar
  16. 16.
    Kolb, C., Mitchell, D., Hanrahan, P.: A realistic camera model for computer graphics. In: ACM SIGGRAPH 1995 Conference Proceedings, pp. 317–324. ACM Press, New York (1995)Google Scholar
  17. 17.
    Haeberli, P., Akeley, K.: The accumulation buffer: hardware support for high-quality rendering. In: ACM SIGGRAPH 1990 Conference Proceedings, pp. 309–318. ACM Press, New York (1990)CrossRefGoogle Scholar
  18. 18.
    Scofield, C.: 2(1/2)-d depth of field simulation for computer animation. In: Graphics Gems III, Morgan Kaufmann, San Francisco (1994)Google Scholar
  19. 19.
    Kosara, R., Miksch, S., Hauser, H.: Semantic depth of field. In: Proceedings of the IEEE Symposium on Information Visualization 2001 (INFOVIS’01), p. 97 (2001)Google Scholar
  20. 20.
    Barsky, B.A.: Vision-realistic rendering: simulation of the scanned foveal image from wavefront data of human subjects. In: Proceedings of the 1st Symposium on Applied perception in graphics and visualization, pp. 73–81. ACM Press, New York (2004)CrossRefGoogle Scholar
  21. 21.
    Barsky, B.A., Tobias, M.J., Horn, D.R., Chu, D.P.: Investigating occlusion and discretization problems in image space blurring techniques. In: First International Conference on Vision, Video, and Graphics, pp. 97–102 (2003)Google Scholar
  22. 22.
    Barsky, B.A., Tobias, M.J., Chu, D.P., Horn, D.R.: Elimination of artifacts due to occlusion and discretization problems in image space blurring techniques. Graphical Models 67(6), 584–599 (2005)MATHCrossRefGoogle Scholar
  23. 23.
    Isaksen, A., McMillan, L., Gortler, S.J.: Dynamically reparameterized light fields. In: ACM SIGGRAPH 2000 Conference Proceedings, ACM Press, New York (2000)Google Scholar
  24. 24.
    Krivanek, J., Zara, J., Bouatouch, K.: Fast depth of field rendering with surface splatting. In: Computer Graphics International 2003 (2003)Google Scholar
  25. 25.
    Perona, P., Malik, J.: Scale space and edge detection using anisotropic diffusion. IEEE Trans. Pattern Anal. Mach. Intell. 12(7), 629–639 (1994)CrossRefGoogle Scholar
  26. 26.
    Perona, P., Malik, J.: A network for multiscale image segmentation. In: IEEE Int. Symp. on Circuits and Systems, pp. 2565–2568. IEEE Computer Society Press, Los Alamitos (1988)CrossRefGoogle Scholar
  27. 27.
    Bertalmio, M., Fort, P., Sanchez-Crespo, D.: Real-time, accurate depth of field using anisotropic diffusion and programmable graphics cards. In: IEEE Second International Symposium on 3DPVT, IEEE Computer Society Press, Los Alamitos (2004)Google Scholar
  28. 28.
    Shaman, H.: The view camera: operations and techniques. American Photographic Book Publishing Co. (1978)Google Scholar
  29. 29.
    Barsky, B.A., Horn, D.R., Klein, S.A., Pang, J.A., Yu, M.: Camera models and optical systems used in computer graphics: Part ii, image based techniques. In: Kumar, V., Gavrilova, M., Tan, C.J.K., L’Ecuyer, P. (eds.) ICCSA 2003. LNCS, vol. 2668, pp. 256–265. Springer, Heidelberg (2003)Google Scholar
  30. 30.
    Carslaw, H.S., Jaeger, J.C.: Conduction of Heat in Solids, 2nd edn. Oxford University Press, Oxford (1959)Google Scholar
  31. 31.
    Shade, J., Gortler, S.J., He, L.-w., Szeliski, R.: Layered depth images. In: Proceedings of ACM SIGGRAPH 1998, ACM Press, New York (1998)Google Scholar
  32. 32.
    Greenleaf, A.R.: Photographic Optics. The Macmillan Company, NYC (1950)Google Scholar
  33. 33.
    Ray, S.F.: Applied Photographic Optics, 3rd edn. Focal Press (2002)Google Scholar
  34. 34.
    Kingslake, R.: Optics in Photography. SPIE – The International Society for Optical Engineering (1992)Google Scholar
  35. 35.
    Williams, J.B.: Image Clarity: High-Resolution Photography. Focal Press (1990)Google Scholar
  36. 36.
    Goldberg, N.: Camera Technology: The Dark Side of the Lens. Academic Press, London (1992)Google Scholar
  37. 37.
    Shinya, M.: Post-filtering for depth of field simulation with ray distribution buffer. In: Proceedings of Graphics Interface ’94, Canadian Information Processing Society, pp. 59–66 (1994)Google Scholar
  38. 38.
    Demers, J.: Depth of field: A survey of techniques. In: GPU Gems, pp. 375–390 (2004)Google Scholar
  39. 39.
    Merklinger, H.M.: The Ins and Outs of Focus: Internet Edition (1992), http://www.trehnholm.org/hmmerk/download.html
  40. 40.
    Barsky, B.A., Bargteil, A.W., Garcia, D.D., Klein, S.A.: Introducing vision-realistic rendering. In: Eurographics Rendering Workshop, posters, pp. 26–28 (2002)Google Scholar
  41. 41.
    Baker, A.A.: Applied Depth of Field. Focal Press (1985)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Todd J. Kosloff
    • 1
  • Brian A. Barsky
    • 2
  1. 1.University of California, Berkeley, Computer Science Division, Berkeley, CA 94720-1776USA
  2. 2.University of California, Berkeley, Computer Science Division and School of Optometry, Berkeley, CA 94720-1776USA

Personalised recommendations